Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; : 149047, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692451

RESUMO

The rates, yields, mechanisms and directionality of electron transfer (ET) are explored in twelve pairs of Rhodobacter (R.) sphaeroides and R. capsulatus mutant RCs designed to defeat ET from the excited primary donor (P*) to the A-side cofactors and re-direct ET to the normally inactive mirror-image B-side cofactors. In general, the R. sphaeroides variants have larger P+HB- yields (up to ~90 %) than their R. capsulatus analogs (up to ~60 %), where HB is the B-side bacteriopheophytin. Substitution of Tyr for Phe at L-polypeptide position L181 near BB primarily increases the contribution of fast P* → P+BB- → P+HB- two-step ET, where BB is the "bridging" B-side bacteriochlorophyll. The second step (~6-8 ps) is slower than the first (~3-4) ps, unlike A-side two-step ET (P* → P+BA- → P+HA-) where the second step (~1 ps) is faster than the first (~3-4 ps) in the native RC. Substitutions near HB, at L185 (Leu, Trp or Arg) and at M-polypeptide site M133/131 (Thr, Val or Glu), strongly affect the contribution of slower (20-50 ps) P* → P+HB- one-step superexchange ET. Both ET mechanisms are effective in directing electrons "the wrong way" to HB and both compete with internal conversion of P* to the ground state (~200 ps) and ET to the A-side cofactors. Collectively, the work demonstrates cooperative amino-acid control of rates, yields and mechanisms of ET in bacterial RCs and how A- vs. B-side charge separation can be tuned in both species.

2.
J Phys Chem B ; 126(44): 8940-8956, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36315401

RESUMO

The primary electron transfer (ET) processes at 295 and 77 K are compared for the Rhodobacter sphaeroides reaction center (RC) pigment-protein complex from 13 mutants including a wild-type control. The engineered RCs bear mutations in the L and M polypeptides that largely inhibit ET from the excited state P* of the primary electron donor (P, a bacteriochlorophyll dimer) to the normally photoactive A-side cofactors and enhance ET to the C2-symmetry related, and normally photoinactive, B-side cofactors. P* decay is multiexponential at both temperatures and modeled as arising from subpopulations that differ in contributions of two-step ET (e.g., P* → P+BB- → P+HB-), one-step superexchange ET (e.g., P* → P+HB-), and P* → ground state. [HB and BB are monomeric bacteriopheophytin and bacteriochlorophyll, respectively.] The relative abundances of the subpopulations and the inherent rate constants of the P* decay routes vary with temperature. Regardless, ET to produce P+HB- is generally faster at 77 K than at 295 K by about a factor of 2. A key finding is that the yield of P+HB-, which ranges from ∼5% to ∼90% among the mutant RCs, is essentially the same at 77 K as at 295 K in each case. Overall, the results show that ET from P* to the B-side cofactors in these mutants does not require thermal activation and involves combinations of ET mechanisms analogous to those operative on the A side in the native RC.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Bacterioclorofilas/metabolismo , Elétrons , Transporte de Elétrons , Mutação , Cinética
3.
Biochemistry ; 60(16): 1260-1275, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33835797

RESUMO

All possible natural amino acids have been substituted for the native LeuL185 positioned near the B-side bacteriopheophytin (HB) in the bacterial reaction center (RC) from Rhodobacter sphaeroides. Additional mutations that enhance electron transfer to the normally inactive B-side cofactors are present. Approximately half of the isolated RCs with Glu at L185 contain a magnesium chlorin (CB) in place of HB. The chlorin is not the common BChl a oxidation product 3-desvinyl-3-acetyl chlorophyll a with a C-C bond in ring D and a C═C bond in ring B but has properties consistent with reversal of these bond orders, giving 17,18-didehydro BChl a. In such RCs, charge-separated state P+CB- forms in ∼5% yield. The other half of the GluL185-containing RCs have a bacteriochlorophyll a (BChl a) denoted ßB in place of HB. Residues His, Asp, Asn, and Gln at L185 yield RCs with ≥85% ßB in the HB site, while most other amino acids result in RCs that retain HB (≥95%). To the best of our knowledge, neither bacterial RCs that harbor five BChl a molecules and one chlorophyll analogue nor those with six BChl a molecules have been reported previously. The finding that altering the local environment within a cofactor binding site of a transmembrane complex leads to in situ generation of a photoactive chlorin with an unusual ring oxidation pattern suggests new strategies for amino acid control over pigment type at specific sites in photosynthetic proteins.


Assuntos
Clorofila/química , Mutação , Processos Fotoquímicos , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/enzimologia , Oxirredução
4.
Proc Natl Acad Sci U S A ; 117(2): 865-871, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31892543

RESUMO

We report 90% yield of electron transfer (ET) from the singlet excited state P* of the primary electron-donor P (a bacteriochlorophyll dimer) to the B-side bacteriopheophytin (HB) in the bacterial photosynthetic reaction center (RC). Starting from a platform Rhodobacter sphaeroides RC bearing several amino acid changes, an Arg in place of the native Leu at L185-positioned over one face of HB and only ∼4 Šfrom the 4 central nitrogens of the HB macrocycle-is the key additional mutation providing 90% yield of P+HB- This all but matches the near-unity yield of A-side P+HA- charge separation in the native RC. The 90% yield of ET to HB derives from (minimally) 3 P* populations with distinct means of P* decay. In an ∼40% population, P* decays in ∼4 ps via a 2-step process involving a short-lived P+BB- intermediate, analogous to initial charge separation on the A side of wild-type RCs. In an ∼50% population, P* → P+HB- conversion takes place in ∼20 ps by a superexchange mechanism mediated by BB An ∼10% population of P* decays in ∼150 ps largely by internal conversion. These results address the long-standing dichotomy of A- versus B-side initial charge separation in native RCs and have implications for the mechanism(s) and timescale of initial ET that are required to achieve a near-quantitative yield of unidirectional charge separation.


Assuntos
Substituição de Aminoácidos , Feofitinas/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Bacterioclorofilas/metabolismo , Transporte de Elétrons , Simulação de Dinâmica Molecular , Mutação , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Engenharia de Proteínas
5.
Photosynth Res ; 141(3): 273-290, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30859455

RESUMO

In bacterial reaction centers (RCs), photon-induced initial charge separation uses an A-side bacteriochlorophyll (BChl, BA) and bacteriopheophytin (BPh, HA), while the near-mirror image B-side BB and HB cofactors are inactive. Two new sets of Rhodobacter capsulatus RC mutants were designed, both bearing substitution of all amino acids for the native histidine M180 (M-polypeptide residue 180) ligand to the core Mg ion of BB. Residues are identified that largely result in retention of a BChl in the BB site (Asp, Ser, Pro, Gln, Asn, Gly, Cys, Lys, and Thr), ones that largely harbor the Mg-free BPh in the BB site (Leu and Ile), and ones for which isolated RCs are comprised of a substantial mixture of these two RC types (Ala, Glu, Val, Met and, in one set, Arg). No protein was isolated when M180 is Trp, Tyr, Phe, or (in one set) Arg. These findings are corroborated by ground state spectra, pigment extractions, ultrafast transient absorption studies, and the yields of B-side transmembrane charge separation. The changes in coordination chemistries did not reveal an RC with sufficiently precise poising of the redox properties of the BB-site cofactor to result in a high yield of B-side electron transfer to HB. Insights are gleaned into the amino acid properties that support BChl in the BB site and into the widely observed multi-exponential decay of the excited state of the primary electron donor. The results also have direct implications for tuning free energies of the charge-separated intermediates in RCs and mimetic systems.


Assuntos
Bacterioclorofilas/genética , Mutagênese , Rhodobacter capsulatus/genética , Ligantes , Proteínas Mutantes/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Análise Espectral , Termodinâmica
6.
J Phys Chem B ; 121(29): 6989-7004, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28715215

RESUMO

Seemingly redundant parallel pathways for electron transfer (ET), composed of identical sets of cofactors, are a cornerstone feature of photosynthetic reaction centers (RCs) involved in light-energy conversion. In native bacterial RCs, both A and B branches house one bacteriochlorophyll (BChl) and one bacteriopheophytin (BPh), but the A branch is used exclusively. Described herein are the results obtained for two Rhodobacter capsulatus RCs with an unnaturally high degree of cofactor asymmetry, two BPh on the RC's B side and two BChl on the A side. These pigment changes derive, respectively, from the His(M180)Leu mutation [a BPh (ΦB) replaces the B-side BChl (BB)], and the Leu(M212)His mutation [a BChl (ßA) replaces the A-side BPh (HA)]. Additionally, Tyr(M208)Phe was employed to disfavor ET to the A branch; in one mutant, Val(M131)Glu creates a hydrogen bond to HB to enhance ET to HB. In both ΦB mutants, the decay kinetics of the excited primary ET donor (P*) resolve three populations with lifetimes of ∼9 ps (50-60%), ∼40 ps (10-20%), and ∼200 ps (20-30%), with P+ΦB- formed predominantly from the 9 ps fraction. The 50-60% yield of P+ΦB- is the highest yet observed for a ΦB-containing RC. The results provide insight into factors needed for efficient multistep ET.


Assuntos
Carotenoides/química , Elétrons , Rhodobacter capsulatus/química , Metabolismo Energético , Cinética , Luz , Modelos Biológicos , Mutação , Rhodobacter capsulatus/genética
7.
FEBS Lett ; 590(16): 2515-26, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325608

RESUMO

The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. The overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.


Assuntos
Transporte de Elétrons/genética , Fotossíntese/genética , Rhodobacter capsulatus/genética , Rhodobacter sphaeroides/genética , Substituição de Aminoácidos , Cinética , Mutagênese Sítio-Dirigida , Mutação , Rhodobacter capsulatus/crescimento & desenvolvimento , Rhodobacter sphaeroides/crescimento & desenvolvimento
8.
Biochim Biophys Acta ; 1857(2): 150-159, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658355

RESUMO

Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P(+)QB(-) yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants explores all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P(+)QB(-) are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 µs. The resulting ranking of mutants for their yield of P(+)QB(-) from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P(+)HB(-)→P(+)QB(-) electron transfer or initial P*→P(+)HB(-) conversion highlight unmet challenges of optimizing both processes simultaneously.


Assuntos
Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Feofitinas/química , Fotossíntese/fisiologia , Rhodobacter capsulatus/química , Ubiquinona/química , Motivos de Aminoácidos , Bacterioclorofilas/metabolismo , Transporte de Elétrons , Expressão Gênica , Ligação de Hidrogênio , Cinética , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Feofitinas/metabolismo , Fotossíntese/efeitos da radiação , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Rhodobacter capsulatus/efeitos da radiação , Eletricidade Estática , Relação Estrutura-Atividade , Ubiquinona/metabolismo
9.
Biophys J ; 108(2): 379-94, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25606686

RESUMO

The electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk. Stigmatellin, an inhibitor of the mitochondrial and photosynthetic respiratory chain, has been proven to be a unique voltage probe of the QB binding pocket. It binds to the QB site with high affinity, and the pK value of its phenolic group monitors the local electrostatic potential with high sensitivity. Investigations with different types of detergent as a model system of isolated RC revealed that the pK of stigmatellin was controlled overwhelmingly by electrostatic and slightly by hydrophobic interactions. Measurements showed a high pK value (>11) of stigmatellin in the QB pocket of the dark-state wild-type RC, indicating substantial negative potential. When the local electrostatics of the QB site was modulated by a single mutation, L213Asp → Ala, or double mutations, L213Asp-L212Glu → Ala-Ala (AA), the pK of stigmatellin dropped to 7.5 and 7.4, respectively, which corresponds to a >210 mV increase in the electrostatic potential relative to the wild-type RC. This significant pK drop (ΔpK > 3.5) decreased dramatically to (ΔpK > 0.75) in the RC of the compensatory mutant (AA+M44Asn → AA+M44Asp). Our results indicate that the L213Asp is the most important actor in the control of the electrostatic potential in the QB site of the dark-state wild-type RC, in good accordance with conclusions of former studies using theoretical calculations or light-induced charge recombination assay.


Assuntos
Antibacterianos/farmacologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Sequência de Aminoácidos , Antibacterianos/química , Benzoquinonas/metabolismo , Sítios de Ligação , Dados de Sequência Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Polienos/química , Polienos/farmacologia , Ligação Proteica , Rhodobacter sphaeroides/enzimologia , Eletricidade Estática
10.
Biochim Biophys Acta ; 1837(11): 1892-1903, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25091280

RESUMO

From the crystal structures of reaction centers (RCs) from purple photosynthetic bacteria, two pathways for electron transfer (ET) are apparent but only one pathway (the A side) operates in the native protein-cofactor complex. Partial activation of the B-side pathway has unveiled the true inefficiencies of ET processes on that side in comparison to analogous reactions on the A side. Of significance are the relative rate constants for forward ET and the competing charge recombination reactions. On the B side, these rate constants are nearly equal for the secondary charge-separation step (ET from bacteriopheophytin to quinone), relegating the yield of this process to <50%. Herein we report efforts to optimize this step. In surveying all possible residues at position 131 in the M subunit, we discovered that when glutamic acid replaces the native valine the efficiency of the secondary ET is nearly two-fold higher than in the wild-type RC. The positive effect of M131 Glu is likely due to formation of a hydrogen bond with the ring V keto group of the B-side bacteriopheophytin leading to stabilization of the charge-separated state involving this cofactor. This change slows charge recombination by roughly a factor of two and affords the improved yield of the desired forward ET to the B-side quinone terminal acceptor.

11.
J Phys Chem B ; 117(15): 4028-41, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23560569

RESUMO

The substantial electronic distinctions between bacteriochlorophyll (BChl) and its Mg-free analogue bacteriopheophytin (BPh) are exploited in two sets of Rhodobacter capsulatus reaction center (RC) mutants that contain a heterodimeric BChl-BPh primary electron donor (D). The BPh component of the M-heterodimer (Mhd) or L-heterodimer (Lhd) obtains from substituting a Leu for His M200 or for His L173, respectively. Lhd-ß and Mhd-ß RCs serve as the initial templates in the two mutant sets, where ß denotes that the L-side BPh acceptor (HL) has been replaced by a BChl (due to substituting His for Leu M212). Three variants each of Lhd-ß and Mhd-ß mutants were constructed: (1) a swap (denoted YF) of the native Phe (L181) and Tyr (M208) residues, which flank D and the nearby M- and L-side monomeric BChl cofactors, respectively, giving Tyr (L181) and Phe (M208); (2) addition of a hydrogen bond (denoted L131LH) to the ring V keto group of the L-macrocycle of D, via replacing the native Leu at L131 with His; (3) the combination of 1 and 2. A low yield of electron transfer (ET) to the M-side BPh (HM) is observed in all four Lhd-containing RCs. Comparison with the yield of ET to ß on the L-side shows that electron density on the L-macrocycle of D* favors ET to the M-side cofactors and vice versa. Increasing or decreasing the electronic asymmetry of D* via the YF, L131LH mutations or the combination results in consistent trends in the characteristics of the long-wavelength ground state absorption band of D, the rate constant of internal conversion of D* to the ground state, and the rate constants for ET to both the L- and M-side cofactors. A surprising correlation is that an increase in the charge asymmetry in D* not only increases the D* internal-conversion rate constant, but also the rate constants for ET to both the L- and M-side cofactors, spanning time scales of tens of picoseconds to several nanoseconds. The YF swap has a previously unrecognized effect on the electronic asymmetry of D*, resulting in increased charge asymmetry for the Mhd and decreased charge asymmetry for the Lhd. This result indicates that the native Tyr (M208) and Phe (L181) in the wild-type RC promote an electron distribution in P* that is the reverse of that favorable for ET to the photoactive L-branch. This conclusion reinforces the view that the native configuration of these residues promotes ET to the L branch primarily by poising the free energies of the charge-separated states. Overall, this work addresses the extent to which electronic couplings complement energetics in underpinning the directionality of ET in the bacterial RC.


Assuntos
Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Dimerização , Transporte de Elétrons , Ligação de Hidrogênio , Modelos Moleculares , Mutação , Processos Fotoquímicos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
12.
J Biol Chem ; 287(11): 8507-14, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22247556

RESUMO

Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodococcus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Transporte de Elétrons/fisiologia , Dados de Sequência Molecular , Mutagênese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Engenharia de Proteínas/métodos , Rhodococcus/genética
13.
Biochim Biophys Acta ; 1787(12): 1505-15, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19632193

RESUMO

Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely Q(A) and Q(B). These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P(+)Q(A)(-) state (P is the primary electron donor) and temperature dependence of the rate of P(+)Q(A)(-) charge recombination that are in good agreement show that in the two RC variants, both Q(A)(-) and Q(B)(-) are destabilized by about the same free energy amount: respectively approximately 100 +/- 5 meV and 90 +/- 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of Q(A)(-) and Q(B)(-). This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein.


Assuntos
Ácido Glutâmico/fisiologia , Fotossíntese , Rhodobacter sphaeroides/metabolismo , Transporte de Elétrons , Metabolismo Energético , Fluorescência , Concentração de Íons de Hidrogênio , Prótons , Temperatura , Termodinâmica
14.
Biochemistry ; 47(44): 11387-9, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18847224

RESUMO

Femtosecond transient absorbance spectroscopy was applied to the study of primary electron transfer in single reaction center crystals from Rhodobacter sphaeroides. Polarized transient absorption spectra of individual crystals are shown to correlate with polarized ground-state absorption spectra and to track cofactor transition moment directions calculated from the crystallographic structure. Electron transfer from the bacteriochlorophyll dimer to the bacteriopheophytin acceptor was found to be multiphasic in crystals and approximately 2-fold slower than in solution. This work demonstrates the ability to resolve ultrafast photosynthetic function in single crystals and allows ultrafast function to be directly correlated with structure.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Cristalização , Cristalografia por Raios X , Transporte de Elétrons , Cinética , Modelos Moleculares , Complexos Multiproteicos/química , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Soluções , Espectrofotometria , Termodinâmica
15.
Biotechnol Prog ; 23(4): 985-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17625910

RESUMO

The characterization of a bioelectronic composite prepared by molecular wiring of a bacterial photosynthetic reaction center (RC) to a metal (Au) electrode is described. Two unique attachment sites on the protein surface were studied as sites for electrical connections--a polyhistidine tag introduced by site-directed mutagenesis and a native cysteine amino acid residue. These two attachment sites were evaluated independently and found to serve effectively in coupling the protein to the electrode surface asymmetrically. Cyclic voltammetry (CV) was used to monitor protein integrity and confirm protein chemisorption and orientation to the organofunctionalized gold electrode. Single-protein transport measurements made with conductive atomic force microscopy (C-AFM) were used to study the electrical transport. Current-voltage (I-V) curves obtained by wiring the protein at the polyhistidine tag showed diodelike behavior. The cysteine attachment site does not serve as an efficient means to address the protein electrically. Scanning tunneling spectroscopy (STS) performed on RCs coupled at the donor side under both dark- and white-light-illuminated conditions confirmed the C-AFM studies.


Assuntos
Biotecnologia/métodos , Fotossíntese , Aminoácidos/química , Cisteína/química , Eletroquímica/métodos , Eletrodos , Eletrônica , Ouro/química , Histidina/química , Microscopia de Força Atômica , Microscopia de Tunelamento , Mutagênese Sítio-Dirigida , Proteínas/química , Espectrofotometria , Propriedades de Superfície
16.
Biochemistry ; 45(23): 7314-22, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16752920

RESUMO

In the native purple bacterial reaction center (RC), light-driven charge separation utilizes only the A-side cofactors, with the symmetry related B-side inactive. The process is initiated by electron transfer from the excited primary donor (P*) to the A-side bacteriopheophytin (P* --> P+ H(A)-) in approximately 3 ps. This is followed by electron transfer to the A-side quinone (P+ H(A)- --> P+ Q(A)-) in approximately 200 ps, with an overall quantum yield of approximately 100%. Using nanosecond flash photolysis and RCs from the Rhodobacter capsulatus F(L181)Y/Y(M208)F/L(M212)H mutant (designated YFH), we have probed the decay pathways of the analogous B-side state P+ H(B)-. The rate of the P+ H(B)- --> ground-state charge-recombination process is found to be (3.0 +/- 0.8 ns)(-1), which is much faster than the analogous (10-20 ns)(-1) rate of P+ H(A)- --> ground state. The rate of P+ H(B)- --> P+ Q(B)- electron transfer is determined to be (3.9 +/- 0.9 ns)(-1), which is about a factor of 20 slower than the analogous A-side process P+ H(A)- --> P+ Q(A)-. The yield of P+ H(B)- --> P+ Q(B)- electron-transfer calculated from these rate constants is 44%. This value, when combined with the known 30% yield of P+ H(B)- from P in YFH RCs, gives an overall yield of 13% for B-side charge separation P* --> P+ H(B)- --> P+ Q(B)- in this mutant. We determine essentially the same value (15%) by comparing the P-bleaching amplitude at approximately 1 ms in YFH and wild-type RCs.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Quinonas/metabolismo , Rhodobacter capsulatus/metabolismo , Cinética , Oxirredução
17.
J Phys Chem B ; 109(50): 24160-72, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16375408

RESUMO

Subpicosecond transient absorption studies are reported for a set of Rhodobacter (R.) capsulatus bacterial photosynthetic reaction centers (RCs) designed to probe the origins of the unidirectionality of charge separation via one of two electron transport chains in the native pigment-protein complex. All of the RCs have been engineered to contain a heterodimeric primary electron donor (D) consisting of a bacteriochlorophyll (BChl) and a bacteriopheophytin (BPh). The BPh component of the M heterodimer (Mhd) or L heterodimer (Lhd) is introduced by substituting a Leu for His M200 or His L173, respectively. Previous work on primary charge separation in heterodimer mutants has not included the Lhd RC from R. capsulatus, which we report for the first time. The Lhd and Mhd RCs are used as controls against which we assess RCs that combine the heterodimer mutations with a second mutation (His substituted for Leu at M212) that results in replacement of the native L-side BPh acceptor with a BChl (beta). The transient absorption spectra reveal clear evidence for charge separation to the normally inactive M-side BPh acceptor (H(M)) in Lhd-beta RCs to form D+H(M)- with a yield of approximately 6%. This state also forms in Mhd-beta RCs but with about one-quarter the yield. In both RCs, deactivation to the ground state is the predominant pathway of D decay, as it is in the Mhd and Lhd single mutants. Analysis of the results indicates an upper limit ofV2L/V2m < or = 4 for the contribution of the electronic coupling elements to the relative rates of electron transfer to the L versus M sides of the wild-type RC. In comparison to the L/M rate ratio (kL/kM) approximately 30 for wild-type RCs, our findings indicate that electronic factors contribute approximately 35% at most to directionality with the other 65% deriving from energetic considerations, which includes differences in free energies, reorganization energies, and contributions of one- and two-step mechanisms on the two sides of the RC.


Assuntos
Transporte de Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/química , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Dimerização , Elétrons , Estrutura Molecular , Mutagênese Sítio-Dirigida , Feofitinas/química , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Propriedades de Superfície
18.
J Struct Funct Genomics ; 6(2-3): 95-102, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16211505

RESUMO

Efficient multiple- or single-wavelength anomalous dispersion (MAD/SAD) techniques that use tunable X-ray sources at third-generation synchrotrons exploit the anomalous scattering of certain heavy atoms for determination of experimental phases. Development of methods for the in vivo substitution of methionine by selenomethionine (SeMet) has revolutionized the process for determination of structures of soluble proteins in recent years. Herein, we report methods for biosynthetic incorporation of SeMet into induced intracytoplasmic membrane proteins of two species of the Rhodobacter genus of purple non-sulfur photosynthetic bacteria. Amino acid analysis of a membrane protein complex that was purified to homogeneity determined that the extent of SeMet incorporation was extensive and approached quantitative replacement. Diffraction-quality crystals were obtained from SeMet-labeled membrane proteins purified from 2 l of culture. These methods augment the potential utility of photosynthetic bacteria and their inducible membrane systems for the production of foreign membrane proteins for structure determination.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteômica/métodos , Rhodobacter/metabolismo , Selenometionina/metabolismo , Cristalização/métodos , Proteínas de Membrana/genética , Análise de Sequência de Proteína , Análise Espectral , Síncrotrons , Difração de Raios X/métodos
19.
J Struct Funct Genomics ; 5(1-2): 167-72, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15263855

RESUMO

Integral membrane proteins present unparalleled challenges for structural genomics programs. Samples from this class of proteins are not only difficult to produce in quantities sufficient for analysis by X-ray diffraction or NMR, but their hydrophobic properties add extra dimension to their purification and subsequent crystallization. New systems that seek to tackle the production problems are in development. In our laboratory, one such strategy exploits the unique physiology of the Rhodobacter species of photosynthetic bacteria where we have designed an overexpression system that coordinates the heterologous production of targeted hydrophobic proteins with nascent, unfilled membranes that can be used to harbor them. In this study, we describe the means by which purification of recombinant membrane proteins produced in such a fashion can be purified efficiently from Rhodobacter membranes using relatively higher-throughput, semi-automated methods. These protocols utilize a state-of-the-art FPLC system for affinity chromatography, followed by gel filtration or ion exchange chromatography to enhance purity for crystallization attempts. The Rhodobacter expression system coupled with the semi-automation of purification steps represents an advance towards the development of a strategy for obtaining structures for membrane proteins at a more rapid pace.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/isolamento & purificação , Estrutura Molecular , Proteômica/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
20.
FEBS Lett ; 570(1-3): 171-4, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15251460

RESUMO

We have determined the first de novo position of the secondary quinone QB in the Rhodobacter sphaeroides reaction center (RC) using phases derived by the single wavelength anomalous dispersion method from crystals with selenomethionine substitution. We found that in frozen RC crystals, QB occupies primarily the proximal binding site. In contrast, our room temperature structure showed that QB is largely in the distal position. Both data sets were collected in dark-adapted conditions. We estimate that the occupancy of the QB site is 80% with a proximal: distal ratio of 4:1 in frozen RC crystals. We could not separate the effect of freezing from the effect of the cryoprotectants ethylene glycol or glycerol. These results could have far-reaching implications in structure/function studies of electron transfer in the acceptor quinone complex because the above are the most commonly used cryoprotectants in spectroscopic experiments.


Assuntos
Crioprotetores/farmacologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Quinonas/química , Benzoquinonas/química , Sítios de Ligação , Cristalografia por Raios X , Elétrons , Etilenoglicol/química , Etilenoglicol/farmacologia , Glicerol/química , Glicerol/farmacologia , Luz , Modelos Químicos , Fosfatos/farmacologia , Compostos de Potássio/farmacologia , Ligação Proteica , Conformação Proteica , Rhodobacter sphaeroides/metabolismo , Selenometionina/química , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA