Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nucleic Acids Res ; 52(D1): D679-D689, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941138

RESUMO

WikiPathways (wikipathways.org) is an open-source biological pathway database. Collaboration and open science are pivotal to the success of WikiPathways. Here we highlight the continuing efforts supporting WikiPathways, content growth and collaboration among pathway researchers. As an evolving database, there is a growing need for WikiPathways to address and overcome technical challenges. In this direction, WikiPathways has undergone major restructuring, enabling a renewed approach for sharing and curating pathway knowledge, thus providing stability for the future of community pathway curation. The website has been redesigned to improve and enhance user experience. This next generation of WikiPathways continues to support existing features while improving maintainability of the database and facilitating community input by providing new functionality and leveraging automation.


Assuntos
Bases de Dados Factuais
2.
J Clin Transl Sci ; 7(1): e214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900350

RESUMO

Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph-based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly "Question-of-the-Month (QotM) Challenge" series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.

3.
Bioinformatics ; 39(9)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37707514

RESUMO

SUMMARY: Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThings Explorer is distributed as a lightweight application that dynamically retrieves information at query time. AVAILABILITY AND IMPLEMENTATION: More information can be found at https://explorer.biothings.io and code is available at https://github.com/biothings/biothings_explorer.


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão
4.
Nature ; 621(7977): 188-195, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648854

RESUMO

γδ T cells are potent anticancer effectors with the potential to target tumours broadly, independent of patient-specific neoantigens or human leukocyte antigen background1-5. γδ T cells can sense conserved cell stress signals prevalent in transformed cells2,3, although the mechanisms behind the targeting of stressed target cells remain poorly characterized. Vγ9Vδ2 T cells-the most abundant subset of human γδ T cells4-recognize a protein complex containing butyrophilin 2A1 (BTN2A1) and BTN3A1 (refs. 6-8), a widely expressed cell surface protein that is activated by phosphoantigens abundantly produced by tumour cells. Here we combined genome-wide CRISPR screens in target cancer cells to identify pathways that regulate γδ T cell killing and BTN3A cell surface expression. The screens showed previously unappreciated multilayered regulation of BTN3A abundance on the cell surface and triggering of γδ T cells through transcription, post-translational modifications and membrane trafficking. In addition, diverse genetic perturbations and inhibitors disrupting metabolic pathways in the cancer cells, particularly ATP-producing processes, were found to alter BTN3A levels. This induction of both BTN3A and BTN2A1 during metabolic crises is dependent on AMP-activated protein kinase (AMPK). Finally, small-molecule activation of AMPK in a cell line model and in patient-derived tumour organoids led to increased expression of the BTN2A1-BTN3A complex and increased Vγ9Vδ2 T cell receptor-mediated killing. This AMPK-dependent mechanism of metabolic stress-induced ligand upregulation deepens our understanding of γδ T cell stress surveillance and suggests new avenues available to enhance γδ T cell anticancer activity.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
5.
ArXiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131885

RESUMO

Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThing Explorer is distributed as a lightweight application that dynamically retrieves information at query time. More information can be found at https://explorer.biothings.io, and code is available at https://github.com/biothings/biothings_explorer.

7.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664389

RESUMO

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Assuntos
COVID-19/imunologia , Biologia Computacional/métodos , Bases de Dados Factuais , SARS-CoV-2/imunologia , Software , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/virologia , Gráficos por Computador , Citocinas/genética , Citocinas/imunologia , Mineração de Dados/estatística & dados numéricos , Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/virologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/virologia , Mapeamento de Interação de Proteínas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Tratamento Farmacológico da COVID-19
9.
Nucleic Acids Res ; 49(D1): D613-D621, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211851

RESUMO

WikiPathways (https://www.wikipathways.org) is a biological pathway database known for its collaborative nature and open science approaches. With the core idea of the scientific community developing and curating biological knowledge in pathway models, WikiPathways lowers all barriers for accessing and using its content. Increasingly more content creators, initiatives, projects and tools have started using WikiPathways. Central in this growth and increased use of WikiPathways are the various communities that focus on particular subsets of molecular pathways such as for rare diseases and lipid metabolism. Knowledge from published pathway figures helps prioritize pathway development, using optical character and named entity recognition. We show the growth of WikiPathways over the last three years, highlight the new communities and collaborations of pathway authors and curators, and describe various technologies to connect to external resources and initiatives. The road toward a sustainable, community-driven pathway database goes through integration with other resources such as Wikidata and allowing more use, curation and redistribution of WikiPathways content.


Assuntos
Bases de Dados Factuais , COVID-19/patologia , Curadoria de Dados , Humanos , Publicações , Interface Usuário-Computador
10.
Genome Biol ; 21(1): 273, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168034

RESUMO

Thousands of pathway diagrams are published each year as static figures inaccessible to computational queries and analyses. Using a combination of machine learning, optical character recognition, and manual curation, we identified 64,643 pathway figures published between 1995 and 2019 and extracted 1,112,551 instances of human genes, comprising 13,464 unique NCBI genes, participating in a wide variety of biological processes. This collection represents an order of magnitude more genes than found in the text of the same papers, and thousands of genes missing from other pathway databases, thus presenting new opportunities for discovery and research.


Assuntos
Genes , Aprendizado de Máquina , Redes e Vias Metabólicas/genética , Biologia Computacional , Bases de Dados Factuais , Humanos , Literatura
12.
Nat Immunol ; 21(5): 513-524, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284594

RESUMO

Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.


Assuntos
Encefalomielite Autoimune Experimental/genética , Perfilação da Expressão Gênica/métodos , Microglia/fisiologia , Esclerose Múltipla/genética , Inflamação Neurogênica/genética , Animais , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Redes Reguladoras de Genes , Ensaios de Triagem em Larga Escala , Humanos , Imunidade Inata , Isoxazóis/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Esclerose Múltipla/tratamento farmacológico , Inflamação Neurogênica/tratamento farmacológico , Estresse Oxidativo , Análise de Sequência de RNA , Análise de Célula Única
13.
Elife ; 92020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32180547

RESUMO

Wikidata is a community-maintained knowledge base that has been assembled from repositories in the fields of genomics, proteomics, genetic variants, pathways, chemical compounds, and diseases, and that adheres to the FAIR principles of findability, accessibility, interoperability and reusability. Here we describe the breadth and depth of the biomedical knowledge contained within Wikidata, and discuss the open-source tools we have built to add information to Wikidata and to synchronize it with source databases. We also demonstrate several use cases for Wikidata, including the crowdsourced curation of biomedical ontologies, phenotype-based diagnosis of disease, and drug repurposing.


Assuntos
Disciplinas das Ciências Biológicas , Biologia Computacional , Bases de Dados Factuais , Genômica , Proteômica , Humanos , Reconhecimento Automatizado de Padrão
14.
Cell ; 177(2): 463-477.e15, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951672

RESUMO

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.


Assuntos
Comunicação Celular/fisiologia , RNA/metabolismo , Adulto , Líquidos Corporais/química , Ácidos Nucleicos Livres/metabolismo , MicroRNA Circulante/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Software
15.
Nat Immunol ; 19(11): 1212-1223, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323343

RESUMO

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Fibrinogênio/antagonistas & inibidores , Doenças Neurodegenerativas/imunologia , Animais , Epitopos , Humanos , Inflamação/imunologia , Camundongos , Ratos
16.
Circ Heart Fail ; 11(2): e004278, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29438982

RESUMO

BACKGROUND: Plasma extracellular RNAs have recently garnered interest as biomarkers in heart failure (HF). Most studies in HF focus on single extracellular RNAs related to phenotypes and outcomes, and few describe their functional roles. We hypothesized that clusters of plasma microRNAs (miRNAs) associated with left ventricular (LV) remodeling in human HF would identify novel subsets of genes involved in HF in animal models. METHODS AND RESULTS: We prospectively measured circulating miRNAs in 64 patients with systolic HF (mean age, 64.8 years; 91% men; median LV ejection fraction, 26%) with serial echocardiography (10 months apart) during medical therapy. We defined LV reverse remodeling as a 15% reduction in LV end-systolic volume index. Using principal components analysis, we identified a component associated with LV reverse remodeling (odds ratio=3.99; P=0.01) that provided risk discrimination for LV reverse remodeling superior to a clinical model (C statistic, 0.58 for a clinical model versus 0.71 for RNA-based model). Using network bioinformatics, we uncovered genes not previously widely described in HF regulated simultaneously by >2 miRNAs. We observed increased myocardial expression of these miRNAs during HF development in animals, with downregulation of target gene expression, suggesting coordinate miRNA-mRNA regulation. Target mRNAs were involved in autophagy, metabolism, and inflammation. CONCLUSIONS: Plasma miRNAs associated with LV reverse remodeling in humans are dysregulated in animal HF and target clusters of genes involved in mechanisms implicated in HF. A translational approach integrating human HF, bioinformatics, and model systems may uncover novel pathways involved in HF. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00351390.


Assuntos
Insuficiência Cardíaca Sistólica/sangue , Insuficiência Cardíaca/sangue , MicroRNAs/sangue , Disfunção Ventricular Esquerda/sangue , Remodelação Ventricular/fisiologia , Idoso , Idoso de 80 Anos ou mais , Terapia de Ressincronização Cardíaca/métodos , Progressão da Doença , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/fisiopatologia
17.
Nucleic Acids Res ; 46(D1): D661-D667, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136241

RESUMO

WikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled. WikiPathways and other pathway databases are used to analyze experimental data by research groups in many fields. Due to the open and collaborative nature of the WikiPathways platform, our content keeps growing and is getting more accurate, making WikiPathways a reliable and rich pathway database. Previously, however, the focus was primarily on genes and proteins, leaving many metabolites with only limited annotation. Recent curation efforts focused on improving the annotation of metabolism and metabolic pathways by associating unmapped metabolites with database identifiers and providing more detailed interaction knowledge. Here, we report the outcomes of the continued growth and curation efforts, such as a doubling of the number of annotated metabolite nodes in WikiPathways. Furthermore, we introduce an OpenAPI documentation of our web services and the FAIR (Findable, Accessible, Interoperable and Reusable) annotation of resources to increase the interoperability of the knowledge encoded in these pathways and experimental omics data. New search options, monthly downloads, more links to metabolite databases, and new portals make pathway knowledge more effortlessly accessible to individual researchers and research communities.


Assuntos
Bases de Dados de Compostos Químicos , Metabolômica , Animais , Curadoria de Dados , Mineração de Dados , Bases de Dados de Compostos Químicos/normas , Bases de Dados Genéticas , Humanos , Redes e Vias Metabólicas , Controle de Qualidade , Ferramenta de Busca , Software
18.
Diabetes Care ; 40(4): 546-553, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28183786

RESUMO

OBJECTIVE: Insulin resistance (IR) is a hallmark of obesity and metabolic disease. Circulating extracellular RNAs (ex-RNAs), stable RNA molecules in plasma, may play a role in IR, though most studies on ex-RNAs in IR are small. We sought to characterize the relationship between ex-RNAs and metabolic phenotypes in a large community-based human cohort. RESEARCH DESIGN AND METHODS: We measured circulating plasma ex-RNAs in 2,317 participants without diabetes in the Framingham Heart Study (FHS) Offspring Cohort at cycle 8 and defined associations between ex-RNAs and IR (measured by circulating insulin level). We measured association between candidate ex-RNAs and markers of adiposity. Sensitivity analyses included individuals with diabetes. In a separate cohort of 90 overweight/obese youth, we measured selected ex-RNAs and metabolites. Biology of candidate microRNAs was investigated in silico. RESULTS: The mean age of FHS participants was 65.8 years (56% female), with average BMI 27.7 kg/m2; participants in the youth cohort had a mean age of 15.5 years (60% female), with mean BMI 33.8 kg/m2. In age-, sex-, and BMI-adjusted models across 391 ex-RNAs in FHS, 18 ex-RNAs were associated with IR (of which 16 were microRNAs). miR-122 was associated with IR and regional adiposity in adults and IR in children (independent of metabolites). Pathway analysis revealed metabolic regulatory roles for miR-122, including regulation of IR pathways (AMPK, target of rapamycin signaling, and mitogen-activated protein kinase). CONCLUSIONS: These results provide translational evidence in support of an important role of ex-RNAs as novel circulating factors implicated in IR.


Assuntos
Resistência à Insulina , Síndrome Metabólica/sangue , Síndrome Metabólica/genética , MicroRNAs/sangue , MicroRNAs/genética , Adiposidade , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Criança , Pré-Escolar , Colesterol/sangue , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/sangue , Proteínas Quinases Ativadas por Mitógeno/genética , Obesidade/sangue , Obesidade/genética , Sobrepeso/sangue , Sobrepeso/genética , Fenótipo , Estudos Prospectivos , Sensibilidade e Especificidade , Triglicerídeos/sangue , Circunferência da Cintura , Adulto Jovem
19.
PLoS Comput Biol ; 12(5): e1004941, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27203685

RESUMO

Reactome and WikiPathways are two of the most popular freely available databases for biological pathways. Reactome pathways are centrally curated with periodic input from selected domain experts. WikiPathways is a community-based platform where pathways are created and continually curated by any interested party. The nascent collaboration between WikiPathways and Reactome illustrates the mutual benefits of combining these two approaches. We created a format converter that converts Reactome pathways to the GPML format used in WikiPathways. In addition, we developed the ComplexViz plugin for PathVisio which simplifies looking up complex components. The plugin can also score the complexes on a pathway based on a user defined criterion. This score can then be visualized on the complex nodes using the visualization options provided by the plugin. Using the merged collection of curated and converted Reactome pathways, we demonstrate improved pathway coverage of relevant biological processes for the analysis of a previously described polycystic ovary syndrome gene expression dataset. Additionally, this conversion allows researchers to visualize their data on Reactome pathways using PathVisio's advanced data visualization functionalities. WikiPathways benefits from the dedicated focus and attention provided to the content converted from Reactome and the wealth of semantic information about interactions. Reactome in turn benefits from the continuous community curation available on WikiPathways. The research community at large benefits from the availability of a larger set of pathways for analysis in PathVisio and Cytoscape. The pathway statistics results obtained from PathVisio are significantly better when using a larger set of candidate pathways for analysis. The conversion serves as a general model for integration of multiple pathway resources developed using different approaches.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Software , Biologia Computacional , Gráficos por Computador , Bases de Dados Factuais , Ontologia Genética , Humanos , Internet , Bases de Conhecimento
20.
Nucleic Acids Res ; 44(D1): D488-94, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26481357

RESUMO

WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access.


Assuntos
Bases de Dados de Compostos Químicos , Modelos Biológicos , Perfilação da Expressão Gênica , Genes , Humanos , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA