Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 28(11): 115003, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38078155

RESUMO

Significance: The gas in scattering media absorption spectroscopy (GASMAS) technique has the potential for continuous, clinical monitoring of preterm infant lung function, removing the need for X-ray diagnosis and reliance on indirect and relatively slow measurement of blood oxygenation. Aim: We aim to determine the optimal source-detector configuration for reliable pathlength calculation and to estimate the oxygen gas concentration inside the lung cavities filled with humidified gas with four different oxygen gas concentrations ranging between 21% and 100%. Approach: Anthropomorphic optical phantoms of neonatal thorax with two different geometries were used to acquire GASMAS signals, for 30 source-detector configurations in transmittance and remittance geometry of phantoms in two sizes. Results: The results show that an internal light administration is more likely to provide a high GASMAS signal-to-noise ratio (SNR). In general, better SNRs were obtained with the smaller set of phantoms. The values of pathlength and O2 concentrations calculated with signals from the phantoms with optical properties at 820 nm exhibit higher variations than signals from the phantoms with optical properties at 764 nm. Conclusion: Our study shows that, by moving the source and detector over the thorax, most of the lung volumes can potentially be assessed using the GASMAS technique.


Assuntos
Recém-Nascido Prematuro , Oxigênio , Recém-Nascido , Humanos , Análise Espectral/métodos , Imagens de Fantasmas , Gases , Pulmão/diagnóstico por imagem , Lasers
2.
Water Res ; 210: 117987, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954368

RESUMO

The Baltic Sea receives substantial amounts of hazardous substances and nutrients, which accumulate for decades and persistently impair the Baltic ecosystems. With long half-lives and high solubility, anthropogenic uranium isotopes (236U and 233U) are ideal tracers to depict the ocean dynamics in the Baltic Sea and the associated impacts on the fates of contaminants. However, their applications in the Baltic Sea are hampered by the inadequate source-term information. This study reports the first three-dimensional distributions of 236U and 233U in the Baltic Sea (2018-2019) and the first long-term hindcast simulation for reprocessing-derived 236U dispersion in the North-Baltic Sea (1971-2018). Using 233U/236U fingerprints, we distinguish 236U from the nuclear weapon testing and civil nuclear industries, which have comparable contributions (142 ± 13 and 174 ± 40 g) to the 236U inventory in modern Baltic seawater. Budget calculations for 236U inputs since the 1950s indicate that, the major 236U sources in the Baltic Sea are the atmospheric fallouts (∼1.35 kg) and discharges from nuclear reprocessing plants (> 211 g), and there is a continuous sink of 236U to the anoxic sediments (589 ± 43 g). Our findings also indicate that the limited water renewal endows the Baltic Sea a strong "memory effect" retaining aged 236U signals, and the previously unknown 236U in the Baltic Sea is likely attributed to the retention of the mid-1990s' discharges from the nuclear reprocessing plants. Our preliminary results demonstrate the power of 236U-129I dual-tracer in investigating water-mass mixing and estimating water age in the Baltic Sea, and this work provides fundamental knowledge for future 236U tracer studies in the Baltic Sea.


Assuntos
Poluentes Radioativos da Água , Países Bálticos , Simulação por Computador , Ecossistema , Água do Mar , Poluentes Radioativos da Água/análise
3.
Sci Rep ; 7(1): 12229, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947789

RESUMO

One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

4.
Light Sci Appl ; 6(11): e17086, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30167214

RESUMO

Technology based on high-peak-power lasers has the potential to provide compact and intense radiation sources for a wide range of innovative applications. In particular, electrons that are accelerated in the wakefield of an intense laser pulse oscillate around the propagation axis and emit X-rays. This betatron source, which essentially reproduces the principle of a synchrotron at the millimeter scale, provides bright radiation with femtosecond duration and high spatial coherence. However, despite its unique features, the usability of the betatron source has been constrained by its poor control and stability. In this article, we demonstrate the reliable production of X-ray beams with tunable polarization. Using ionization-induced injection in a gas mixture, the orbits of the relativistic electrons emitting the radiation are reproducible and controlled. We observe that both the signal and beam profile fluctuations are significantly reduced and that the beam pointing varies by less than a tenth of the beam divergence. The polarization ratio reaches 80%, and the polarization axis can easily be rotated. We anticipate a broad impact of the source, as its unprecedented performance opens the way for new applications.

5.
R Soc Open Sci ; 3(10): 160416, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27853557

RESUMO

Investigating the factors regulating fish condition is crucial in ecology and the management of exploited fish populations. The body condition of cod (Gadus morhua) in the Baltic Sea has dramatically decreased during the past two decades, with large implications for the fishery relying on this resource. Here, we statistically investigated the potential drivers of the Baltic cod condition during the past 40 years using newly compiled fishery-independent biological data and hydrological observations. We evidenced a combination of different factors operating before and after the ecological regime shift that occurred in the Baltic Sea in the early 1990s. The changes in cod condition related to feeding opportunities, driven either by density-dependence or food limitation, along the whole period investigated and to the fivefold increase in the extent of hypoxic areas in the most recent 20 years. Hypoxic areas can act on cod condition through different mechanisms related directly to species physiology, or indirectly to behaviour and trophic interactions. Our analyses found statistical evidence for an effect of the hypoxia-induced habitat compression on cod condition possibly operating via crowding and density-dependent processes. These results furnish novel insights into the population dynamics of Baltic Sea cod that can aid the management of this currently threatened population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA