Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170629, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38320700

RESUMO

Cover crop cultivation can be a vital strategy for mitigating climate change in agriculture, by increasing soil carbon stocks and resource efficiency within the cropping system. Another mitigation option is to harvest the cover crop and use the biomass to replace greenhouse gas-intensive products, such as fossil fuels. Harvesting cover crop biomass could also reduce the risk of elevated N2O emissions associated with cover crop cultivation under certain conditions, which would offset much of the mitigation potential. However, harvesting cover crops also reduces soil carbon sequestration potential, as biomass is removed from the field, and cultivation of cover crops requires additional field operations that generate greenhouse gas emissions. To explore these synergies and trade-offs, this study investigated the life cycle climate effect of cultivating an oilseed radish cover crop under different management strategies in southern Scandinavia. Three alternative scenarios (Incorporation of biomass into soil; Mowing and harvesting aboveground biomass; Uprooting and harvesting above- and belowground biomass) were compared with a reference scenario with no cover crop. Harvested biomass in the Mowing and Uprooting scenarios was assumed to be transported to a biogas plant for conversion to upgraded biogas, with the digestate returned to the field as an organic fertiliser for the subsequent crop. The climate change mitigation potential of cover crop cultivation was found to be 0.056, 0.58 and 0.93 Mg CO2-eq ha-1 in the Incorporation, Mowing and Uprooting scenario, respectively. The Incorporation scenario resulted in the highest soil carbon sequestration, but also the greatest soil N2O emissions. Substitution of fossil diesel showed considerable mitigation potential, especially in the Uprooting scenario, where biogas production was highest. Sensitivity analysis revealed a strong impact of time of cover crop establishment, with earlier establishment leading to greater biomass production and thus greater mitigation potential.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Mudança Climática , Biocombustíveis , Agricultura/métodos , Solo , Carbono/análise , Óxido Nitroso/análise
2.
Biotechnol Biofuels Bioprod ; 16(1): 165, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924121

RESUMO

Biogas from anaerobic digestion is a versatile energy carrier that can be upgraded to compressed biomethane gas (CBG) as a renewable and sustainable alternative to natural gas. Organic residues and energy crops are predicted to be major sources of bioenergy production in the future. Pre-treatment can reduce the recalcitrance of lignocellulosic energy crops such as Salix to anaerobic digestion, making it a potential biogas feedstock. This lignocellulosic material can be co-digested with animal manure, which has the complementary effect of increasing volumetric biogas yield. Salix varieties exhibit variations in yield, composition and biomethane potential values, which can have a significant effect on the overall biogas production system. This study assessed the impact of Salix varietal differences on the overall mass and energy balance of a co-digestion system using steam pre-treated Salix biomass and dairy manure (DaM) to produce CBG as the final product. Six commercial Salix varieties cultivated under unfertilised and fertilised conditions were compared. Energy and mass flows along this total process chain, comprising Salix cultivation, steam pre-treatment, biogas production and biogas upgrading to CBG, were evaluated. Two scenarios were considered: a base scenario without heat recovery and a scenario with heat recovery. The results showed that Salix variety had a significant effect on energy output-input ratio (R), with R values in the base scenario of 1.57-1.88 and in the heat recovery scenario of 2.36-2.94. In both scenarios, unfertilised var. Tordis was the best energy performer, while the fertilised var. Jorr was the worst. Based on this energy performance, Salix could be a feasible feedstock for co-digestion with DaM, although its R value was at the lower end of the range reported previously for energy crops.

3.
Biotechnol Biofuels Bioprod ; 16(1): 140, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730644

RESUMO

BACKGROUND: Aquaculture is a major user of plant-derived feed ingredients, such as vegetable oil. Production of vegetable oil and protein is generally more energy-intensive than production of the marine ingredients they replace, so increasing inclusion of vegetable ingredients increases the energy demand of the feed. Microbial oils, such as yeast oil made by fermentation of lignocellulosic hydrolysate, have been proposed as a complement to plant oils, but energy assessments of microbial oil production are needed. This study presents a mass and energy balance for a biorefinery producing yeast oil through conversion of wheat straw hydrolysate, with co-production of biomethane and power. RESULTS: The results showed that 1 tonne of yeast oil (37 GJ) would require 9.2 tonnes of straw, 14.7 GJ in fossil primary energy demand, 14.6 GJ of process electricity and 13.3 GJ of process heat, while 21.5 GJ of biomethane (430 kg) and 6 GJ of excess power would be generated simultaneously. By applying economic allocation, the fossil primary energy demand was estimated to 11.9 GJ per tonne oil. CONCLUSIONS: Fossil primary energy demand for yeast oil in the four scenarios studied was estimated to be 10-38% lower than for the commonly used rapeseed oil and process energy demand could be met by parallel combustion of lignin residues. Therefore, feed oil can be produced from existing non-food biomass without causing agricultural expansion.

4.
Sci Total Environ ; 835: 155455, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35472345

RESUMO

Agricultural land use and management practices affect the global climate due to greenhouse gas (GHG) fluxes and changes in land surface properties. Increased albedo has the potential to counteract the radiative forcing and warming effect of emitted GHGs. Thus considering albedo could be important to evaluate and improve agricultural systems in light of climate change, but the albedo of individual practices is usually not known. This study quantified the albedo of individual crops under regional conditions, and evaluated the importance of albedo change for the climate impact of current crop production using life cycle assessment (LCA). Seven major crops in southern Sweden were assessed relative to a land reference without cultivation, represented by semi-natural grassland. Crop-specific albedo data were obtained from a MODIS product (MCD43A1 v6), by combining its spatial response pattern with geodata on agricultural land use 2011-2020. Fluxes of GHGs were estimated using regional data and models, including production of inputs, field operations, and soil nitrogen and carbon balances. Ten-year mean albedo was 6-11% higher under the different crops than under the reference. Crop-specific albedo varied between years due to weather fluctuations, but differences between crops were largely consistent. Increased albedo countered the GHG impact from production of inputs and field operations by 17-47% measured in GWP100, and the total climate impact was warming. Using a time-dependent metric, all crops had a net cooling impact on global mean surface temperature on shorter timescales due to albedo (3-12 years under different crops), but a net warming impact on longer timescales due to GHG emissions. The methods and data presented in this study could support increasingly comprehensive assessments of agricultural systems. Further research is needed to integrate climatic effects of land use on different spatial and temporal scales, and direct and indirect consequences from a systems perspective.


Assuntos
Agricultura , Gases de Efeito Estufa , Agricultura/métodos , Produção Agrícola , Produtos Agrícolas , Gases de Efeito Estufa/análise , Solo
5.
Nat Food ; 2(1): 38-46, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37117652

RESUMO

The European Union (EU) livestock sector relies on imported soybean as a feed source, but feeding soybean to animals leads to a loss of macronutrients compared to direct human consumption, and soybean production is associated with deforestation. Here we show that 75-82% of current EU animal fat and protein production could be sustained without soybean imports while avoiding increased use of cropland for feed production within the EU. Reduced soybean feed exports, mainly from South America, would free up 11-14 million hectares outside the EU, but indirect land-use changes would increase demand for palm oil produced in southeast Asia. Avoiding imported soybean feeds would result in reduced EU pork and poultry production; increased plant-based food consumption would be required to maintain the supply of essential nutrients for human diets. Optimizing livestock production to overcome dependency on imported soybean feed can reduce cropland demand in deforestation-prone areas while supporting the nutritional requirements of EU diets-but will require progressive policies targeting all aspects of the food system.

6.
J Agric Saf Health ; 26(1): 5-14, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32429616

RESUMO

Agriculture technology is moving toward automation, placing operators in a supervisory role. This change in operator workload may lead to increased stress and higher mental load, resulting in reduced attention and hence greater risk of illness or injury to humans and damage to equipment. This study investigated the use of easily applicable equipment to measure mental load. Three methods were used to measure the mental load on machine operators: heart rate monitoring, two types of electroencephalograph (EEG) evaluation, and an assessment protocol. Three driving exercises (general driving, slalom driving, and loading) and a counting exercise were used in a driving simulator to create different levels of mental load. Due to the number of exercises, a single-scale assessment protocol was used to save time. We found that only the assessment protocol gave clear results and would work well as an evaluation tool. The heart rate and EEG measurements did not provide clear data for mental load assessment.


Assuntos
Agricultura/instrumentação , Cognição , Carga de Trabalho/psicologia , Automação , Eletroencefalografia , Fazendeiros , Frequência Cardíaca , Humanos
7.
Biotechnol Biofuels ; 10: 217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28924452

RESUMO

BACKGROUND: Use of bio-based diesel is increasing in Europe. It is currently produced from oilseed crops, but can also be generated from lignocellulosic biomass such as straw. However, removing straw affects soil organic carbon (SOC), with potential consequences for the climate impact of the biofuel. This study assessed the climate impacts and energy balance of biodiesel production from straw using oleaginous yeast, with subsequent biogas production from the residues, with particular emphasis on SOC changes over time. It also explored the impact of four different scenarios for returning the lignin fraction of the biomass to soil to mitigate SOC changes. Climate impact was assessed using two methods, global warming potential (GWP) and a time-dependent temperature model (∆T s ) that describes changes in mean global surface temperature as a function of time or absolute temperature change potential (AGTP). RESULTS: Straw-derived biodiesel reduced GWP by 33-80% compared with fossil fuels and primary fossil energy use for biodiesel production was 0.33-0.80 MJprim/MJ, depending on the scenario studied. Simulations using the time-dependent temperature model showed that a scenario where all straw fractions were converted to energy carriers and no lignin was returned to soil resulted in the highest avoided climate impact. The SOC changes due to straw removal had a large impact on the results, both when using GWP and the time-dependent temperature model. CONCLUSIONS: In a climate perspective, it is preferable to combust straw lignin to produce electricity rather than returning it to the soil if the excess electricity replaces natural gas electricity, according to results from both GWP and time-dependent temperature modelling. Using different methods to assess climate impact did not change the ranking between the scenarios, but the time-dependent temperature model provided information about system behaviour over time that can be important for evaluation of biofuel systems, particularly in relation to climate target deadlines.

8.
Biotechnol Biofuels ; 9: 229, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27800015

RESUMO

BACKGROUND: Biodiesel is the main liquid biofuel in the EU and is currently mainly produced from vegetable oils. Alternative feedstocks are lignocellulosic materials, which provide several benefits compared with many existing feedstocks. This study examined a technical process and its mass and energy balances to gain a systems perspective of combined biodiesel (FAME) and biogas production from straw using oleaginous yeasts. Important process parameters with a determining impact on overall mass and energy balances were identified and evaluated. RESULTS: In the base case, 41% of energy in the biomass was converted to energy products, primary fossil fuel use was 0.37 MJprim/MJ produced and 5.74 MJ fossil fuels could be replaced per kg straw dry matter. The electricity and heat produced from burning the lignin were sufficient for process demands except in scenarios where the yeast was dried for lipid extraction. Using the residual yeast cell mass for biogas production greatly increased the energy yield, with biogas contributing 38% of total energy products. CONCLUSIONS: In extraction methods without drying the yeast, increasing lipid yield and decreasing the residence time for lipid accumulation are important for the energy and mass balance. Changing the lipid extraction method from wet to dry makes the greatest change to the mass and energy balance. Bioreactor agitation and aeration for lipid accumulation and yeast propagation is energy demanding. Changes in sugar concentration in the hydrolysate and residence times for lipid accumulation greatly affect electricity demand, but have relatively small impacts on fossil energy use (NER) and energy yield (EE). The impact would probably be greater if externally produced electricity were used.

9.
Bioresour Technol ; 101(18): 7192-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20435469

RESUMO

The aim of the present paper was to investigate the land use, environmental impact and fossil energy use when using biogas instead of natural gas in the production of nitrogen fertilisers. The biogas was assumed to be produced from anaerobic digestion of ley grass and maize. The calculations showed that 1 ha of agricultural land in south-west Sweden can produce 1.7 metric ton of nitrogen in the form of ammonium nitrate per year from ley grass, or 3.6 ton from maize. The impact on global warming, from cradle to gate, was calculated to be lower when producing nitrogen fertiliser from biomass compared with natural gas. Eutrophication and acidification potential was higher in the biomass scenarios. The greatest advantage of the biomass systems however lies in the potential to reduce agriculture's dependency on fossil fuels. In the biomass scenarios, only 2-4 MJ of primary fossil energy was required, while 35 MJ/kgN was required when utilising natural gas.


Assuntos
Agricultura/estatística & dados numéricos , Biocombustíveis/estatística & dados numéricos , Transferência de Energia , Meio Ambiente , Fertilizantes/estatística & dados numéricos , Modelos Biológicos , Nitrogênio/química , Nitrogênio/metabolismo , Suécia
10.
Bioresour Technol ; 99(17): 8034-41, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18440225

RESUMO

Ammonium nitrate and calcium ammonium nitrate are the most commonly used straight nitrogen fertilisers in Europe, accounting for 43% of the total nitrogen used for fertilisers. They are both produced in a similar way; carbonate can be added as a last step to produce calcium ammonium nitrate. The environmental impact, fossil energy input and land use from using gasified biomass (cereal straw and short rotation willow (Salix) coppice) as feedstock in ammonium nitrate production were studied in a cradle-to-gate evaluation using life cycle assessment methodology. The global warming potential in the biomass systems was only 22-30% of the impact from conventional production using natural gas. The eutrophication potential was higher for the biomass systems due to nutrient leaching during cultivation, while the acidification was about the same in all systems. The primary fossil energy use was calculated to be 1.45 and 1.37MJ/kg nitrogen for Salix and straw, respectively, compared to 35.14MJ for natural gas. The biomass production was assumed to be self-supporting with nutrients by returning part of the ammonium nitrate produced together with the ash from the gasification. For the production of nitrogen from Salix, it was calculated that 3914kg of nitrogen can be produced every year from 1ha, after that 1.6% of the produced nitrogen has been returned to the Salix production. From wheat straw, 1615kg of nitrogen can be produced annually from 1ha, after that 0.6% of the nitrogen has been returned.


Assuntos
Biomassa , Meio Ambiente , Fertilizantes , Nitratos/síntese química , Salix/crescimento & desenvolvimento , Eutrofização , Combustíveis Fósseis , Efeito Estufa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA