Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(35): eabm7935, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044567

RESUMO

Protein assembly is a main route to generating complexity in living systems. Revealing the relevant molecular details is challenging because of the intrinsic heterogeneity of species ranging from few to hundreds of molecules. Here, we use mass photometry to quantify and monitor the full range of actin oligomers during polymerization with single-molecule sensitivity. We find that traditional nucleation-based models cannot account for the observed distributions of actin oligomers. Instead, the key step of filament formation is a slow transition between distinct states of an actin filament mediated by cation exchange or ATP hydrolysis. The resulting model reproduces important aspects of actin polymerization, such as the critical concentration for filament formation and bulk growth behavior. Our results revise the mechanism of actin nucleation, shed light on the role and function of actin-associated proteins, and introduce a general and quantitative means to studying protein assembly at the molecular level.

2.
Sci Data ; 7(1): 404, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214568

RESUMO

Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 µm x 1.7 µm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.


Assuntos
Colífagos , Lasers , Aceleradores de Partículas , Vírion , Difração de Raios X
3.
J Appl Crystallogr ; 53(Pt 4): 949-956, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32788902

RESUMO

The pressing need for knowledge of the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers has spurred the development of several complementary characterization approaches. Here a method based on ptychography is presented that can retrieve high-resolution complex-valued wavefunctions of individual pulses without strong constraints on the illumination or sample object used. The technique is demonstrated within experimental conditions suited for diffraction experiments and exploiting Kirkpatrick-Baez focusing optics. This lensless technique, applicable to many other short-pulse instruments, can achieve diffraction-limited resolution.

4.
Nat Commun ; 11(1): 167, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919346

RESUMO

Intense x-ray free-electron laser (XFEL) pulses hold great promise for imaging function in nanoscale and biological systems with atomic resolution. So far, however, the spatial resolution obtained from single shot experiments lags averaging static experiments. Here we report on a combined computational and experimental study about ultrafast diffractive imaging of sucrose clusters which are benchmark organic samples. Our theoretical model matches the experimental data from the water window to the keV x-ray regime. The large-scale dynamic scattering calculations reveal that transient phenomena driven by non-linear x-ray interaction are decisive for ultrafast imaging applications. Our study illuminates the complex interplay of the imaging process with the rapidly changing transient electronic structures in XFEL experiments and shows how computational models allow optimization of the parameters for ultrafast imaging experiments.

5.
Sci Adv ; 5(5): eaav8801, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31058226

RESUMO

The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.

7.
IUCrJ ; 5(Pt 6): 673-680, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443352

RESUMO

Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.

8.
IUCrJ ; 5(Pt 5): 531-541, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224956

RESUMO

Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.

9.
Virology ; 516: 239-245, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29407382

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers. The most distinct feature of the particle is a large and dense body (LDB) consistently found inside all particles. Electron cryo-tomography of 147 particles shows that the LDB is preferentially located in proximity to the probable lipid bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. The observed LDB reinforces the structural complexity of MelV, setting it apart from other NCLDVs.


Assuntos
Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Vírion/fisiologia , Vírion/ultraestrutura , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus de DNA/genética , Genoma Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Montagem de Vírus
10.
Phys Rev Lett ; 119(15): 158102, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077445

RESUMO

We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.


Assuntos
Vírus/ultraestrutura , Difração de Raios X , Lasers , Radiografia , Vírus/química
11.
IUCrJ ; 4(Pt 3): 251-262, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512572

RESUMO

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.

12.
J Appl Crystallogr ; 49(Pt 4): 1356-1362, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27504081

RESUMO

Flash X-ray imaging has the potential to determine structures down to molecular resolution without the need for crystallization. The ability to accurately predict the diffraction signal and to identify the optimal experimental configuration within the limits of the instrument is important for successful data collection. This article introduces Condor, an open-source simulation tool to predict X-ray far-field scattering amplitudes of isolated particles for customized experimental designs and samples, which the user defines by an atomic or a refractive index model. The software enables researchers to test whether their envisaged imaging experiment is feasible, and to optimize critical parameters for reaching the best possible result. It also aims to support researchers who intend to create or advance reconstruction algorithms by simulating realistic test data. Condor is designed to be easy to use and can be either installed as a Python package or used from its web interface (http://lmb.icm.uu.se/condor). X-ray free-electron lasers have high running costs and beam time at these facilities is precious. Data quality can be substantially improved by using simulations to guide the experimental design and simplify data analysis.

13.
Sci Data ; 3: 160064, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27478984

RESUMO

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 µm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.


Assuntos
Oryza/virologia , Reoviridae/isolamento & purificação , Vírion , Algoritmos , Aceleradores de Partículas , Raios X
14.
Sci Data ; 3: 160061, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27479842

RESUMO

Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.


Assuntos
Ciclo do Carbono , Halothiobacillus/ultraestrutura , Organelas , Halothiobacillus/metabolismo , Organelas/ultraestrutura , Raios X
15.
Sci Data ; 3: 160058, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27479514

RESUMO

Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.


Assuntos
Lasers , Difração de Raios X , Células , Cristalografia por Raios X , Cianobactérias , Elétrons , Modelos Moleculares , Modelos Teóricos , Nanopartículas , Proteínas , Pulso Arterial , Fatores de Tempo , Raios X
16.
J Appl Crystallogr ; 49(Pt 3): 1042-1047, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27275147

RESUMO

Advances in X-ray detectors and increases in the brightness of X-ray sources combined with more efficient sample delivery techniques have brought about tremendous increases in the speed of data collection in diffraction experiments. Using X-ray free-electron lasers such as the Linac Coherent Light Source (LCLS), more than 100 diffraction patterns can be collected in a second. These high data rates are invaluable for flash X-ray imaging (FXI), where aerosolized samples are exposed to the X-ray beam and the resulting diffraction patterns are used to reconstruct a three-dimensional image of the sample. Such experiments require immediate feedback on the quality of the data collected to adjust or validate experimental parameters, such as aerosol injector settings, beamline geometry or sample composition. The scarcity of available beamtime at the laser facilities makes any delay extremely costly. This paper presents Hummingbird, an open-source scalable Python-based software tool for real-time analysis of diffraction data with the purpose of giving users immediate feedback during their experiments. Hummingbird provides a fast, flexible and easy-to-use framework. It has already proven to be of great value in numerous FXI experiments at the LCLS.

17.
Phys Rev Lett ; 114(9): 098102, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793853

RESUMO

We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.


Assuntos
Imageamento Tridimensional/métodos , Mimiviridae/ultraestrutura , Difração de Raios X/métodos , Algoritmos , Elétrons , Lasers , Difração de Raios X/instrumentação
18.
Nat Commun ; 6: 5704, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25669616

RESUMO

There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.


Assuntos
Cianobactérias/citologia , Imageamento Tridimensional/métodos , Lasers , Análise de Célula Única/métodos , Aerossóis , Confiabilidade dos Dados , Elétrons , Injeções , Fenômenos Ópticos , Fótons , Difração de Raios X , Raios X
19.
Opt Express ; 22(23): 28914-25, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402130

RESUMO

We use a Mach-Zehnder type autocorrelator to split and delay XUV pulses from the FLASH soft X-ray laser for triggering and subsequently probing the explosion of aerosolised sugar balls. FLASH was running at 182 eV photon energy with pulses of 70 fs duration. The delay between the pump-probe pulses was varied between zero and 5 ps, and the pulses were focused to reach peak intensities above 10¹6W/cm² with an off-axis parabola. The direct pulse triggered the explosion of single aerosolised sucrose nano-particles, while the delayed pulse probed the exploding structure. The ejected ions were measured by ion time of flight spectrometry, and the particle sizes were measured by coherent diffractive imaging. The results show that sucrose particles of 560-1000 nm diameter retain their size for about 500 fs following the first exposure. Significant sample expansion happens between 500 fs and 1 ps. We present simulations to support these observations.


Assuntos
Elétrons , Imageamento Tridimensional/métodos , Lasers , Nanosferas/química , Análise Espectral/métodos , Sacarose/química , Simulação por Computador , Hidrogênio/química , Íons , Termodinâmica , Raios X
20.
J Appl Crystallogr ; 47(Pt 3): 1118-1131, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24904246

RESUMO

The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA