Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602710

RESUMO

Nonstructural carbohydrates (NSC) are essential for tree growth and adaptation, yet our understanding of the seasonal storage and mobilization dynamics of whole-tree NSC is still limited, especially when tree functional types are involved. Here, Quercus acutissima Carruth. and Pinus massoniana Lamb. with distinct life-history traits (i.e., a deciduous broadleaf species vs. an evergreen coniferous species) were studied to assess the size and seasonal fluctuations of organ and whole-tree NSC pools with a focus on comparing differences in carbon resource mobilization patterns between the two species. We sampled the organs (leaf, branch, stem, and root) of the target trees repeatedly over four seasons of the year. Then, NSC concentrations in each organ were paired with biomass estimates from the allometric model to generate whole-tree NSC pools. The seasonal dynamics of the whole-tree NSC of Q. acutissima and P. massoniana reached the peak in autumn and summer, respectively. The starch pools of the two species were supplemented in the growing season while the soluble sugar pools were the largest in the dormant season. Seasonal dynamics of organ-level NSC concentrations and pools were affected by organ type and tree species, with above-ground organs generally increasing during the growing season and P. massoniana roots decreasing during the growing season. In addition, the whole-tree NSC pools of P. massoniana were larger but Q. acutissima showed larger seasonal fluctuations, indicating that larger storage was not associated with more pronounced seasonal fluctuations. We also found that the branch and root were the most dynamic organs of Q. acutissima and P. massoniana, respectively, and were the major suppliers of NSC to support tree growth activities. These results provide fundamental insights into the dynamics and mobilization patterns of NSC at the whole-tree level, and have important implications for investigating environmental adaptions of different tree functional types.

2.
Plant Cell Environ ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644635

RESUMO

Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.

3.
Tree Physiol ; 43(5): 722-736, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36715627

RESUMO

In cold and humid temperate forests, low temperature, late frost and frequent freeze-thaw cycles are the main factors limiting tree growth and survival. Ring- and diffuse-porous tree species differing in xylem anatomy coexist in these forests, but their divergent adaptations to these factors have been poorly explored. To fill this knowledge gap, we compared four ring-porous and four diffuse-porous tree species from the same temperate forest in Northeast China by quantifying their leaf and stem functional traits, their stem growth rates using tree ring analysis and their resistance to cold represented by upper altitude species distribution borders from survey data. We found that the ring-porous trees were characterized by traits related to more rapid water transport, carbon gain and stem growth rates than those of the diffuse-porous species. Compared with the diffuse-porous species, the ring-porous species had a significantly higher shoot hydraulic conductance (Ks-shoot, 0.52 vs 1.03 kg m-1 s-1 MPa-1), leaf photosynthetic rate (An, 11.28 vs 15.83 µmol m-2 s-1), relative basal area increment (BAIr, 2.28 vs 0.72 cm year-1) and stem biomass increment (M, 0.34 vs 0.09 kg year-1 m-1). However, the observed upper elevational distribution limit of the diffuse-porous species was higher than that of the ring-porous species and was associated with higher values of conservative traits, such as longer leaf life span (R2 = 0.52). Correspondingly, BAIr and M showed significant positive correlations with acquisitive traits such as Ks-shoot (R2 = 0.77) and leaf photosynthetic rate (R2 = 0.73) across the eight species, with the ring-porous species occurring at the fast-acquisitive side of the spectrum and the diffuse-porous species located on the opposite side. The observed contrasts in functional traits between the two species groups improved our understanding of their differences in terms of growth strategies and adaptive capabilities in the cold, humid temperate forests.


Assuntos
Florestas , Árvores , Porosidade , Xilema , Folhas de Planta , Água
4.
Plant Cell Environ ; 46(1): 106-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253806

RESUMO

Xylem hydraulic characteristics govern plant water transport, affecting both drought resistance and photosynthetic gas exchange. Therefore, they play critical roles in determining the adaptation of different species to environments with various water regimes. Here, we tested the hypothesis that variation in xylem traits associated with a trade-off between hydraulic efficiency and safety against drought-induced embolism contributes to niche differentiation of tree species along a sharp water availability gradient on the slope of a unique river valley located in a semi-humid area. We found that tree species showed clear niche differentiation with decreasing water availability from the bottom towards the top of the valley. Tree species occupying different positions, in terms of vertical distribution distance from the bottom of the valley, showed a strong trade-off between xylem water transport efficiency and safety, as evidenced by variations in xylem structural traits at both the tissue and pit levels. This optimized their xylem hydraulics in their respective water regimes. Thus, the trade-off between hydraulic efficiency and safety contributes to clear niche differentiation and, thereby, to the coexistence of tree species in the valley with heterogeneous water availability.


Assuntos
Árvores , Água
5.
Sci Total Environ ; 856(Pt 1): 159017, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36167124

RESUMO

Drought combined with extreme heatwaves has been increasingly identified as the important trigger of worldwide tree mortality in the context of climate change; nonetheless, our understanding of the potential hydraulic and thermal impairments of hot droughts to trees and the subsequent post-recovery process remains limited. To investigate the response of tree water and carbon relations to drought, heatwave, and combined drought-heatwave stresses, three-year-old potted seedlings of Fraxinus mandshurica Rupr., a dominant tree species in temperate forests of northeast China, were grown under well-watered and drought-stressed conditions and exposed to a rapid, acute heatwave treatment. During the heatwave treatment with a maximum temperature exceeding 40 °C for two days, the leaf temperature of drought-stressed seedlings was, on average, 5 °C higher than that of well-watered counterparts due to less effective evaporative cooling, indicating that soil water availability influenced leaf thermoregulatory capacity during hot extremes. Consistently, more pronounced crown damage, as shown by 13 % irreversible leaf scorch, was found in seedlings under the drought-heatwave treatment relative to sole heatwave treatment, alongside the more severe stem xylem embolism and leaf electrolyte leakage. While the heatwave treatment accelerated the depletion of non-structural carbohydrates in drought-stressed seedlings, the increase of branch soluble sugar concentration in response to heatwave might be related to the requirement for maintaining hydraulic functioning via osmoregulation under high dehydration risk. The coordination between leaf stomatal conductance and total non-structural carbohydrate content during the post-heatwave recovery phase implied that plant-water relations and carbon physiology were closely coupled in coping with hot droughts. This study highlights that, under scenarios of aggravating drought co-occurring with heatwaves, tree seedlings could face a high risk of crown decline in relation to the synergistically increased hydraulic and thermal impairments.


Assuntos
Secas , Fraxinus , Plântula , Árvores/fisiologia , Água/fisiologia , Carbono , Carboidratos
6.
New Phytol ; 236(2): 714-728, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811425

RESUMO

Hemiepiphytic figs killing their host trees is an ecological process unique to the tropics. Yet the benefits and adaptive strategies of their special life history remain poorly understood. We compared leaf phosphorus (P) content data of figs and palms worldwide, and functional traits and substrate P content of hemiepiphytic figs (Ficus tinctoria), their host palm and nonhemiepiphytic conspecifics at different growth stages in a common garden. We found that leaf P content of hemiepiphytic figs and their host palms significantly decreased when they were competing for soil resources, but that of hemiepiphytic figs recovered after host death. P availability in the canopy humus and soil decreased significantly with the growth of hemiepiphytic figs. Functional trait trade-offs of hemiepiphytic figs enabled them to adapt to the P shortage while competing with their hosts. From the common garden to a global scale, the P competition caused by high P demand of figs may be a general phenomenon. Our results suggest that P competition is an important factor causing host death, except for mechanically damaging and shading hosts. Killing hosts benefits hemiepiphytic figs by reducing interspecific P competition and better acquiring P resources in the P-deficient tropics, thereby linking the life history strategy of hemiepiphytic figs to the widespread P shortage in tropical soils.


Assuntos
Ficus , Vespas , Animais , Fósforo , Folhas de Planta , Solo , Árvores
7.
Ying Yong Sheng Tai Xue Bao ; 33(3): 711-719, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35524523

RESUMO

Ginkgo biloba is an important urban ornamental tree species, but poor growth and damages often occur in urban environments. As a street tree species, the decline and death of G. biloba is particularly frequent, with the relevant physiological mechanism being unclear. In this study, we compared hydraulic characteristics, non-structural carbohydrate (NSC) contents and health status between G. biloba trees growing along the streets and those in parks in Shenyang City. The results showed that G. biloba growing along the streets showed higher degrees of branch and leaf mortality than those growing in the parks. Branches of G. biloba growing in both conditions showed lower degrees of xylem embolism. Branch hydraulic vulnerable curves of G. biloba under the two growing conditions also showed no significant difference, with the average P50 being lower than -2.8 MPa. G. biloba growing along the streets had lower leaf area specific conductivity, smaller tracheid diameter, smaller hydraulic diameter, lower soluble sugar content and total NSC than those growing in parks. Hydraulic failure was not the direct reason for the decline and mortality of G. biloba growing along streets. Under the more stressed growth conditions along the streets, G. biloba had smaller tracheid diameters in stems and lower Huber values, which limited the ability of water transport and photosynthetic carbon assimilation at the whole branch level. In addition, in order to deal with more serious stress such as greater heat and drought stresses, G. biloba might need to invest more NSC to repair damage, which further decreaded NSC contents in branches and increased the risk of carbon imbalance. At the same habitat (street or park), xylem hydraulics and NSC contents of G. biloba also showed relatively large difference among sampling sites, which reflected large heterogeneity of urban environment for tree growth.


Assuntos
Ginkgo biloba , Xilema , Carboidratos , Carbono , Secas , Folhas de Planta/fisiologia , Árvores/fisiologia , Água/fisiologia , Xilema/fisiologia
8.
Plant Physiol ; 189(1): 204-214, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35099552

RESUMO

The hydraulic vulnerability segmentation (HVS) hypothesis implies the existence of differences in embolism resistance between plant organs along the xylem pathway and has been suggested as an adaptation allowing the differential preservation of more resource-rich tissues during drought stress. Compound leaves in trees are considered a low-cost means of increasing leaf area and may thus be expected to show evidence of strong HVS, given the tendency of compound-leaved tree species to shed their leaf units during drought. However, the existence and role of HVS in compound-leaved tree species during drought remain uncertain. We used an optical visualization technique to estimate embolism occurrence in stems, petioles, and leaflets of shoots in two compound-leaved tree species, Manchurian ash (Fraxinus mandshurica) and Manchurian walnut (Juglans mandshurica). We found higher (less negative) water potentials corresponding to 50% loss of conductivity (P50) in leaflets and petioles than in stems in both species. Overall, we observed a consistent pattern of stem > petiole > leaflet in terms of xylem resistance to embolism and hydraulic safety margins (i.e. the difference between mid-day water potential and P50). The coordinated variation in embolism vulnerability between organs suggests that during drought conditions, trees benefit from early embolism and subsequent shedding of more expendable organs such as leaflets and petioles, as this provides a degree of protection to the integrity of the hydraulic system of the more carbon costly stems. Our results highlight the importance of HVS as an adaptive mechanism of compound-leaved trees to withstand drought stress.


Assuntos
Embolia , Juglans , Secas , Folhas de Planta , Caules de Planta , Árvores , Água , Xilema
9.
Tree Physiol ; 42(4): 727-739, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718811

RESUMO

Quantifying inter-specific variations of tree resilience to drought and revealing the underlying mechanisms are of great importance to the understanding of forest functionality, particularly in water-limited regions. So far, comprehensive studies incorporating investigations in inter-specific variations of long-term growth patterns of trees and the underlying physiological mechanisms are very limited. Here, in a semi-arid site of northern China, tree radial growth rate, inter-annual tree-ring growth responses to climate variability, as well as physiological characteristics pertinent to xylem hydraulics, carbon assimilation and drought tolerance were analyzed in seven pine species growing in a common environment. Considerable inter-specific variations in radial growth rate, growth response to drought and physiological characteristics were observed among the studied species. Differently, the studied species exhibited similar degrees of resistance to drought-induced branch xylem embolism, with water potential corresponding to 50% loss hydraulic conductivity ranging from -2.31 to -2.96 MPa. We found that higher branch hydraulic efficiency is related to greater leaf photosynthetic capacity, smaller hydraulic safety margin and lower woody density (P < 0.05, linear regressions), but not related to higher tree radial growth rate (P > 0.05). Rather, species with higher hydraulic conductivity and photosynthetic capacity were more sensitive to drought stress and tended to show weaker growth resistance to extreme drought events as quantified by tree-ring analyses, which is at least partially due to a trade-off between hydraulic efficiency and safety across species. This study thus demonstrates the importance of drought resilience rather than instantaneous water and carbon flux capacity in determining tree growth in water-limited environments.


Assuntos
Secas , Pinus , Árvores/fisiologia , Água/fisiologia , Xilema/fisiologia
10.
Physiol Plant ; 167(4): 661-675, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30637766

RESUMO

Xylem vulnerability to cavitation and hydraulic efficiency are directly linked to fine-scale bordered pit features in water-conducting cells of vascular plants. However, it is unclear how pit characteristics influence water transport and carbon economy in tropical species. The primary aim of this study was to evaluate functional implications of changes in pit characteristics for water relations and photosynthetic traits in tropical Ficus species with different growth forms (i.e. hemiepiphytic and non-hemiepiphytic) grown under common conditions. Intervessel pit characteristics were measured using scanning electron microscopy in five hemiepiphytic and five non-hemiepiphytic Ficus species to determine whether these traits were related to hydraulics, leaf photosynthesis, stomatal conductance and wood density. Ficus species varied greatly in intervessel pit structure, hydraulic conductivity and leaf physiology, and clear differences were observed between the two growth forms. The area and diameter of pit aperture were negatively correlated with sapwood-specific hydraulic conductivity, mass-based net assimilation rate, stomatal conductance (gs ), intercellular CO2 concentration (Ci ) and the petiole vessel lumen diameters (Dv ), but positively correlated with wood density. Pit morphology was only negatively correlated with sapwood- and leaf-specific hydraulic conductivity and Dv . Pit density was positively correlated with gs , Ci and Dv , but negatively with intrinsic leaf water-use efficiency. Pit and pit aperture shape were not significantly correlated with any of the physiological traits. These findings indicate a significant role of pit characteristics in xylem water transport, carbon assimilation and ecophysiological adaptation of Ficus species in tropical rain forests.


Assuntos
Ficus/fisiologia , Fotossíntese , Xilema/fisiologia , Folhas de Planta , Estômatos de Plantas/fisiologia , Água
11.
Tree Physiol ; 39(5): 729-739, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668831

RESUMO

Characterizing differences in key functional traits between simple-leaved (SL) and compound-leaved (CL) tree species can contribute to a better understanding of the adaptive significance of compound leaf form. In particular, this information may provide a mechanistic explanation to the long-proposed fast-growth hypothesis of CL tree species. Here, using five SL and five CL tree species co-occurring in a typical temperate forest of Northeast China, we tested whether higher hydraulic efficiency underlies potentially high photosynthetic capacity in CL species. We found that the CL species had significantly higher hydraulic conductance at the whole-branch level than the SL species (0.52 ± 0.13 vs 0.15 ± 0.04 × 10-4 kg m-2 s-1 Pa-1, P = 0.029). No significant difference in net photosynthetic rate (14.7 ± 2.43 vs 12.5 ± 2.05 µmol m-2 s-1, P = 0.511) was detected between these two groups, but this was largely due to the existence of one outlier species in each of the two functional groups. Scrutinization of the intragroup variations in functional traits revealed that distinctions of the two outlier species in wood type (ring- vs diffuse-porous) from their respective functional groups have likely contributed to their aberrant physiological performances. The potentially high photosynthetic capacity of CL species seems to require ring-porous wood to achieve high hydraulic efficiency. Due to its limitation on leaf photosynthetic capacity, diffuse-porous wood with lower hydraulic conductivity largely precludes its combination with the 'throw-away' strategy (i.e., annually replacing the stem-like rachises) of compound-leaved tree species, which intrinsically requires high carbon assimilation rate to compensate for their extra carbon losses. Our results for the first time show clear differentiation in hydraulic architecture and CO2 assimilation between sympatric SL and CL species, which contributes to the probing of the underlying mechanism responsible for the potential fast growth of trees with compound leaves.


Assuntos
Fotossíntese , Folhas de Planta/anatomia & histologia , Transpiração Vegetal , Árvores/fisiologia , China , Folhas de Planta/fisiologia , Árvores/anatomia & histologia
12.
Tree Physiol ; 38(12): 1792-1804, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376119

RESUMO

Nonstructural carbohydrates (NSC) have been proposed to play an important role in maintaining the hydraulic integrity of trees, particularly in environments with high risks of embolism formation, but knowledge about the interaction between NSC reserves and xylem hydraulics is still very limited. We studied the variation of NSC reserves and hydraulic traits in Pinus koraiensis Sieb. et Zucc. (Korean pine) in March and June across a relatively large altitudinal gradient in Changbai Mountain of Northeast China. One of the major aims was to investigate the potential role NSC plays in maintaining hydraulic integrity of overwintering stems in facing freezing-induced embolism. Consistent with our hypotheses, substantial variations in both NSC contents and hydraulic traits were observed across altitudes and between the two seasons. In March, when relatively high degrees of winter embolism exist, the percentage loss of conductivity (PLC) showed an exponential increase with altitude. Most notably, positive correlations between branch and trunk soluble sugar content and PLC (P = 0.053 and 0.006) were observed across altitudes during this period. These correlations could indicate that more soluble sugars are required for maintaining stem hydraulic integrity over the winter by resisting or refilling freezing-induced embolism in harsher environments, although more work is needed to establish a direct causal relationship between NSC dynamics and xylem hydraulics. If the correlation is indeed directly associated with varying demands for maintaining hydraulic integrity across environmental gradients, greater carbon demands may compromise tree growth under conditions of higher risk of winter embolism leading to a trade-off between competitiveness and stress resistance, which may be at least partially responsible for the lower dominance of Korean pine trees at higher altitudes.


Assuntos
Metabolismo dos Carboidratos , Pinus/metabolismo , Árvores/metabolismo , Xilema/metabolismo , Altitude , China , Hidrologia , Caules de Planta/metabolismo , Estações do Ano
13.
New Phytol ; 219(2): 530-541, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682759

RESUMO

Some temperate tree species mitigate the negative impacts of frost-induced xylem cavitation by restoring impaired hydraulic function via positive pressures, and may therefore be more resistant to frost fatigue (the phenomenon that post-freezing xylem becomes more susceptible to hydraulic dysfunction) than nonpressure-generating species. We test this hypothesis and investigate underlying anatomical/physiological mechanisms. Using a common garden experiment, we studied key hydraulic traits and detailed xylem anatomical characteristics of 18 sympatric tree species. These species belong to three functional groups, that is, one generating both root and stem pressures (RSP), one generating only root pressure (RP), and one unable to generate such pressures (NP). The three functional groups diverged substantially in hydraulic efficiency, resistance to drought-induced cavitation, and frost fatigue resistance. Most notably, RSP and RP were more resistant to frost fatigue than NP, but this was at the cost of reduced hydraulic conductivity for RSP and reduced resistance to drought-induced cavitation for RP. Our results show that, in environments with strong frost stress: these groups diverge in hydraulic functioning following multiple trade-offs between hydraulic efficiency, resistance to drought and resistance to frost fatigue; and how differences in anatomical characteristics drive such divergence across species.


Assuntos
Congelamento , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Pressão , Árvores/fisiologia , Água/fisiologia , Análise de Componente Principal , Característica Quantitativa Herdável , Especificidade da Espécie , Madeira/fisiologia , Xilema/fisiologia , Xilema/ultraestrutura
14.
Ying Yong Sheng Tai Xue Bao ; 29(2): 352-360, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29692047

RESUMO

Hydraulic characteristics of trees are strongly influenced by their xylem structures. The divergence in wood type between ring-porous and diffuse-porous species is expected to lead to significantly different hydraulic architecture between these two functional groups. However, there is a lack of comprehensive comparative studies in hydraulic traits between the two groups, in that no study has compared the whole-shoot level hydraulic conductance and detailed pit-level xylem anatomy has not been reported yet. In the present study, detailed hydraulic related traits were stu-died in three ring-porous and four diffuse-porous tree species commonly found in the broadleaf tree species of the Changbai Mountains, including whole-shoot hydraulic conductance (Kshoot), resis-tance to drought-induced embolism (P50), and detailed tissue- and pit-level anatomical characteristics. Our results showed that: 1) consistent with the differences in stem hydraulic conductivity, ring-porous species showed significantly higher Kshoot but significantly lower resistance to drought-induced embolism, i.e., higher P50, indicating a trade-off between hydraulic efficiency and safety in those two functional groups; 2) consistent with their significant divergence in hydraulic functions, the two functional groups showed significant differences in a suite of xylem anatomical characteristics at both the tissue and pit levels, such as maximum vessel length, vessel diameter, pit aperture area and aperture fraction; 3) significant correlations were identified between xylem structural characteristics and between structure and functions across both functional groups, indicating that differences in hydraulic functions were underlain by divergences in a suite structural traits. The competing structural requirements between different hydraulic traits, such as between shoot hydraulic conductance and resistance to drought-induced embolism, reflected the biophysical constraints of xylem design that could not fulfill multiple requirements of xylem functioning at the same time.


Assuntos
Secas , Árvores , Xilema/fisiologia , Caules de Planta , Água , Madeira
15.
Tree Physiol ; 38(7): 1041-1052, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401304

RESUMO

Stomatal conductance (gs) generally decreases under elevated CO2 concentration (eCO2) and its sensitivity varies widely among species, yet the underlying mechanisms for these observed patterns are not totally clear. Understanding these underlying mechanisms, however, is critical for addressing problems regarding plant-environment interactions in a changing climate. We examined gs, water transport efficiency of different components along the whole-plant hydraulic system and allometric scaling in seedlings of six tree species grown under ambient and eCO2 treatments (400 and 600 ppm, respectively). Growth under eCO2 caused gs to decrease in all species but to highly variable extents, ranging from 13% (Populus tremuloides Michx.) to 46% (Gymnocladus dioicus (L.)). Accompanying this significant decrease in gs, substantial changes in plant hydraulic architecture occurred, with root hydraulic conductance expressed both on leaf area and root mass bases overall exhibiting significant decreases, while stem and leaf hydraulic efficiency either increased or showed no consistent pattern of change. Moreover, significant changes in allometry in response to eCO2 affected the whole-plant water supply and demand relations. The interspecific variation in gs response among species was not correlated with relative changes in stem and leaf hydraulic conductance but was most strongly correlated with the relative change in the allometric scaling between roots and leaves, and to a lesser extent with the intrinsic root hydraulic conductance of the species. The results underscore that allometric adjustments between root and leaf play a key role in determining the interspecific sensitivity of gs responses to eCO2. Plant hydraulics and their associated allometric scaling are important changes accompanying gs responses to eCO2 and may play important roles in mediating the interspecific variations of leaf gas exchange responses, which suggests that mechanistic investigations regarding plant responses to eCO2 need to integrate characteristics of hydraulics and allometric scaling in the future.


Assuntos
Dióxido de Carbono/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Árvores/fisiologia , Hidrologia
16.
Plant Cell Environ ; 41(7): 1500-1511, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29424933

RESUMO

The frequently observed forest decline in water-limited regions may be associated with impaired tree hydraulics, but the precise physiological mechanisms remain poorly understood. We compared hydraulic architecture of Mongolian pine (Pinus sylvestris var. mongolica) trees of different size classes from a plantation and a natural forest site to test whether greater hydraulic limitation with increasing size plays an important role in tree decline observed in the more water-limited plantation site. We found that trees from plantations overall showed significantly lower stem hydraulic efficiency. More importantly, plantation-grown trees showed significant declines in stem hydraulic conductivity and hydraulic safety margins as well as syndromes of stronger drought stress with increasing size, whereas no such trends were observed at the natural forest site. Most notably, the leaf to sapwood area ratio (LA/SA) showed a strong linear decline with increasing tree size at the plantation site. Although compensatory adjustments in LA/SA may mitigate the effect of increased water stress in larger trees, they may result in greater risk of carbon imbalance, eventually limiting tree growth at the plantation site. Our results provide a potential mechanistic explanation for the widespread decline of Mongolian pine trees in plantations of Northern China.


Assuntos
Agricultura Florestal , Pinus sylvestris/crescimento & desenvolvimento , Envelhecimento/fisiologia , China , Pinus sylvestris/fisiologia , Transpiração Vegetal , Água/metabolismo
17.
Funct Plant Biol ; 45(5): 501-508, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32290989

RESUMO

Hemlock woolly adelgid (Adelges tsugae Annand) (HWA) is an invasive insect that feeds upon the foliage of eastern hemlock (Tsuga canadensis (L.) Carrière) trees, leading to a decline in health and often mortality. The exact mechanism leading to the demise of eastern hemlocks remains uncertain because little is known about how HWA infestation directly alters the host's physiology. To evaluate the physiological responses of eastern hemlock during early infestation of HWA, we measured needle loss, xylem hydraulic conductivity, vulnerability to cavitation, tracheid anatomy, leaf-level gas exchange, leaf water potential and foliar cation and nutrient levels on HWA-infested and noninfested even-aged trees in an experimental garden. HWA infestation resulted in higher xylem hydraulic conductivity correlated with an increase in average tracheid lumen area and no difference in vulnerability to cavitation, indicating that needle loss associated with HWA infestation could not be attributed to reduced xylem transport capacity. HWA-infested trees exhibited higher rates of net photosynthesis and significant changes in foliar nutrient partitioning, but showed no differences in branch increment growth rates compared with noninfested trees. This study suggests that HWA-induced decline in the health of eastern hemlock trees is not initially caused by compromised water relations or needle loss.

18.
Physiol Plant ; 163(2): 183-195, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29193125

RESUMO

Elevated tropospheric ozone (O3 ) concentration has been shown to affect many aspects of plant performance including detrimental effects on leaf photosynthesis and plant growth. However, it is not known whether such changes are accompanied by concomitant responses in plant hydraulic architecture and water relations, which would have great implications for plant growth and survival in face of unfavorable water conditions. A soybean (Glycine max (L.) Merr.) cultivar commonly used in Northeast China was exposed to non-filtered air (NF, averaged 24.0 nl l-1 ) and elevated O3 concentrations (eO3 , 40 nl l-1 supplied with NF air) in six open-top chambers for 50 days. The eO3 treatment resulted in a significant decrease in whole-plant hydraulic conductance that is mainly attributable to the reduced hydraulic conductance of the root system and the leaflets, while stem and leaf petiole hydraulic conductance showed no significant response to eO3 . Stomatal conductance of plants grown under eO3 was lower during mid-morning but significantly higher at midday, which resulted in substantially more negative daily minimum water potentials. Moreover, excised leaves from the eO3 treated plants showed significantly higher rates of water loss, suggesting a lower ability to withhold water when water supply is impeded. Our results indicate that, besides the direct detrimental effects of eO3 on photosynthetic carbon assimilation, its influences on hydraulic architecture and water relations may also negatively affect O3 -sensitive crops by deteriorating the detrimental effects of unfavorable water conditions.


Assuntos
Glycine max/fisiologia , Ozônio/análise , Transpiração Vegetal/fisiologia , Água/metabolismo , Fotossíntese , Folhas de Planta/fisiologia
19.
Front Plant Sci ; 8: 1619, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979282

RESUMO

Leaf-stem allometry is an important spectrum that linked to biomass allocation and life history strategy in plants, although the determinants and evolutionary significance of leaf-stem allometry remain poorly understood. Leaf and stem architectures - including stem area/mass, petiole area/mass, lamina area/mass, leaf number, specific leaf area (LA), and mass-based leafing intensity (LI) - were measured on the current-year branches for 28 Ficus species growing in a common garden in SW China. The leaf anatomical traits, stem wood density (WD), and stem anatomical and mechanical properties of these species were also measured. We analyzed leaf-stem allometric relationships and their associations with stem hydraulic ad mechanical properties using species-level data and phylogenetically independent contrasts. We found isometric relationship between leaf lamina area/mass and stem area/mass, suggesting that the biomass allocation to leaf was independent to stem size. However, allometric relationship between LA/mass and petiole mass was found, indicating large leaves invest a higher fractional of biomass in petiole than small ones. LI, i.e., leaf numbers per unit of stem mass, was negatively related with leaf and stem size. Species with larger terminal branches tend to have larger vessels and theoretical hydraulic conductivity, but lower WD and mechanical strength. The size of leaf lamina, petiole, and stem was correlated positively with stem theoretical hydraulic conductivity, but negatively with stem WD and mechanical strength. Our results suggest that leaf-stem allometry in Ficus species was shaped by the trade-off between stem hydraulic efficiency and mechanical stability, supporting a functional interpretation of the relationship between leaf and stem dimensions.

20.
Front Plant Sci ; 8: 501, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439283

RESUMO

Floral longevity (FL) determines the balance between pollination success and flower maintenance. While a longer floral duration enhances the ability of plants to attract pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-lived leaves display a positive correlation with their dry mass per unit area, which influences leaf construction costs and physiological functions. However, little is known about the association among FL and floral dry mass per unit area (FMA) and water maintenance traits. We investigated whether increased FL might incur similar costs. Our assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact of FMA and flower water-maintenance characteristics on FL. We found a positive relationship between FL and FMA. Floral longevity showed significant correlations with osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA. Neither the size nor the mass per area was correlated between leaves and flowers, indicating that flower and leaf economic traits evolved independently. Therefore, our findings demonstrate a clear relationship between FL and the capacity to maintain water status in the flower. These economic constraints also indicate that extending the flower life span can have a high physiological cost in Paphiopedilum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA