Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
2.
J Inorg Biochem ; 259: 112661, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39018748

RESUMO

In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO­d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.

3.
Eur J Med Chem ; 271: 116398, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614061

RESUMO

In contemporary studies, the predominant utilization of C60 derivatives pertains to their role as photosensitizers or agents that scavenge free radicals. The intriguing coexistence of these divergent functionalities has prompted extensive investigation into water-soluble fullerenes. The photodynamic properties of these compounds find practical applications in DNA cleavage, antitumor interventions, and antibacterial endeavors. Consequently, photodynamic therapy is progressively emerging as a pivotal therapeutic modality within the biomedical domain, owing to its notable levels of safety and efficacy. The essential components of photodynamic therapy encompass light of the suitable wavelength, oxygen, and a photosensitizer, wherein the reactive oxygen species generated by the photosensitizer play a pivotal role in the therapeutic mechanism. The remarkable ability of fullerenes to generate singlet oxygen has garnered significant attention from scholars worldwide. Nevertheless, the limited permeability of fullerenes across cell membranes owing to their low water solubility necessitates their modification to enhance their efficacy and utilization. This paper reviews the applications of fullerene derivatives as photosensitizers in antitumor and antibacterial fields for the recent years.


Assuntos
Antibacterianos , Antineoplásicos , Fulerenos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fulerenos/química , Fulerenos/farmacologia , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Animais , Estrutura Molecular , Neoplasias/tratamento farmacológico
4.
Ecotoxicol Environ Saf ; 272: 116050, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325272

RESUMO

Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca2+) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot. The results showed that cell survival rate, SOD, CAT, GSH-Px, ATP and MMP gradually decreased with the increase of SiNPs concentration, while intracellular ROS, Ca2+, LDH and apoptosis rate increased with the increase of SiNPs concentration. In total cellular proteins,the expressions of mitochondrial functional proteins VDAC and UCP2 gradually increased, the expression of mitochondrial dynamic related protein DRP1 increased while the expressions of OPA1 and Mfn2 decreased. The expressions of mitophagy related proteins PINK1, Parkin and LC3Ⅱ/LC3Ⅰ increased and P62 gradually decreased, as well as the expressions of apoptosis related proteins Apaf-1, Cleaved-Caspase-3, Caspase-3, Caspase-9, Bax and Cyt-C. In mitochondrial proteins, the expressions of mitochondrial dynamic related proteins DRP1 and p-DRP1 were increased, while the expressions of OPA1 and Mfn2 were decreased. Expressions of mitochondrial autophagy associated proteins PINK1, Parkin, LC3II/LC3I increased, P62 decreased gradually, as well as the expressions of apoptosis related proteins Cleaved-Caspase-3, Caspase-3, and Caspase-9 increased, and Cyt-C expressions decreased. To further demonstrate the role of ROS and DRP1 in HT22 cell apoptosis induced by SiNPs, we selected the ROS inhibitor N-Acetylcysteine (NAC) and Dynamin-related protein 1 (DRP1) inhibitor Mdivi-1. The experimental results indicated that the above effects were remarkably improved after the use of inhibitors, further confirming that SiNPs induce the production of ROS in cells, activate DRP1, cause excessive mitochondrial division, induce mitophagy, destroy mitochondrial function and eventually lead to apoptosis.


Assuntos
Dinaminas , Mitofagia , Nanopartículas , Dióxido de Silício , Trifosfato de Adenosina , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Dinaminas/metabolismo , Nanopartículas/toxicidade , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/farmacologia , Superóxido Dismutase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral
5.
Adv Healthc Mater ; 13(11): e2303892, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38219028

RESUMO

Stimuli-responsive nanomedicines represent a pivotal technology for in situ on-demand drug release and offer multiple advantages over conventional drug delivery systems to combat rheumatoid arthritis(RA). However, the lack of sensitivity to a single-stimuli source or the inability to synchronize multi-stimuli responses can easily lead to challenges in achieving precise-theranostics of RA. Herein, a homology-activated ultrasensitive nanomedicines MnO2-CQ4T-GOx(MCG NMs) is designed for NIR-II fluorescence(NIR-II FL)/magnetic resonance imaging(MRI)-guided effective "knock-on" dynamic anti-RA therapy. Building upon the characteristics of the RA-microenvironment, the MCG innovatively construct a MnO2-Mn2+ system, which can normalized activation sites. The ultrasensitive-responsive degradation is achieved using the multi-stimuli processes in the RA-microenvironment, triggering release of functional small molecules. The produced Mn2+ can exert Fenton-like activity to generate •OH from H2O2, thus providing the effective chemodynamic therapy(CDT). Moreover, the up-regulation of H2O2 by GOx-catalysis not only sensitizes the MnO2-Mn2+ system but also achieves self-enhancing CDT efficacy. The NIR-II FL quenching of CQ4T-BSA in the aggregated state occurs in MCG NMs, which can be rapidly and precisely "turn-on" via the MnO2-Mn2+ system. Meanwhile, the integration of activated Mn2+-based MRI imaging has successfully developed an activatable dual-modal imaging. Feedback imaging-guided precise photodynamic therapy of CQ4T-BSA can achieve efficient "knock-on" dynamic therapy for RA.


Assuntos
Artrite Reumatoide , Clorofilídeos , Imageamento por Ressonância Magnética , Compostos de Manganês , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Animais , Camundongos , Humanos , Óxidos/química , Nanomedicina/métodos , Peróxido de Hidrogênio/química , Nanomedicina Teranóstica/métodos , Porfirinas/química
6.
Drug Deliv Transl Res ; 14(2): 295-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37581742

RESUMO

Extracellular vesicles (EVs), which are nanoparticles that are actively released by cells, contain a variety of biologically active substances, serve as significant mediators of intercellular communication, and participate in many processes, in health and pathologically. Compared with traditional nanodrug delivery systems (NDDSs), EVs have unique advantages due to their natural physiological properties, such as their biocompatibility, stability, ability to cross barriers, and inherent homing properties. A growing number of studies have reported that EVs deliver therapeutic proteins, small-molecule drugs, siRNAs, miRNAs, therapeutic proteins, and nanomaterials for targeted therapy in various diseases. However, due to the lack of standardized techniques for isolating, quantifying, and characterizing EVs; lower-than-anticipated drug loading efficiency; insufficient clinical production; and potential safety concerns, the practical application of EVs still faces many challenges. Here, we systematically review the current commonly used methods for isolating EVs, summarize the types and methods of loading therapeutic drugs into EVs, and discuss the latest progress in applying EVs as NDDs. Finally, we present the challenges that hinder the clinical application of EVs.


Assuntos
Vesículas Extracelulares , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , RNA Interferente Pequeno , Humanos
7.
Int J Biol Macromol ; 253(Pt 8): 127324, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838116

RESUMO

Stearic acid (C18:0, SA) is a saturated long-chain fatty acid (LCFA) that has a prominent function in lactating dairy cows. It is obtained primarily from the diet and is stored in the form of triacylglycerol (TAG) molecules. The transmembrane glycoprotein cluster of differentiation 36 (CD36) is also known as fatty acid translocase, but whether SA promotes lipid synthesis through CD36 and FAK/mTORC1 signaling is unknown. In this study, we examined the function and mechanism of CD36-mediated SA-induced lipid synthesis in bovine mammary epithelial cells (BMECs). SA-enriched supplements enhanced lipid synthesis and the FAK/mTORC1 pathway in BMECs. SA-induced lipid synthesis, FAK/mTORC1 signaling, and the expression of lipogenic genes were impaired by anti-CD36 and the CD36-specific inhibitor SSO, whereas overexpression of CD36 effected the opposite results. Inhibition of FAK/mTORC1 by TAE226/Rapamycin attenuated SA-induced TAG synthesis, inactivated FAK/mTORC1 signaling, and downregulated the lipogenic genes PPARG, CD36, ACSL1, SCD, GPAT4, LIPIN1, and DGAT1 at the mRNA and protein levels in BMECs. By coimmunoprecipitation and yeast two-hybrid screen, CD36 interacted directly with Fyn but not Lyn, and Fyn bound directly to FAK; FAK also interacted directly with TSC2. CD36 linked FAK through Fyn, and FAK coupled mTORC1 through TSC2 to form the CD36/Fyn/FAK/mTORC1 signaling axis. Thus, stearic acid promotes lipogenesis through CD36 and Fyn/FAK/mTORC1 signaling in BMECs. Our findings provide novel insights into the underlying molecular mechanisms by which LCFA supplements promote lipid synthesis in BMECs.


Assuntos
Lactação , Lipogênese , Feminino , Bovinos , Animais , Lipogênese/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Glândulas Mamárias Animais/metabolismo , Ácidos Esteáricos/farmacologia , Ácidos Graxos/metabolismo , Células Epiteliais/metabolismo
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(11): 159396, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717905

RESUMO

Chlorogenic acid (CGA) as one of the most ubiquitously dietary polyphenolic compounds, has been reported to have various antimicrobial effects and exhibit strong anti-inflammatory ability. Staphylococcus aureus is a gram-positive bacterium that can induce mastitis. However, the mechanism through which S. aureus infection affects lipid synthesis and whether CGA have protective effect on S. aureus reduced lipid synthesis is not fully understood. In this study, the internalization of S. aureus reduced intracellular lipid droplet formation, decreased the levels of intracellular triacylglycerol, total cholesterol and 7 types of fatty acid and downregulated the expression of lipogenic genes FAS, ACC, and DGAT1 in bovine mammary epithelial cells (BMECs). In addition, we found that S. aureus intracellular infection attenuated mTORC1 activation resulting in Lipin 1 nuclear localization. Remarkablely, S. aureus infection-mediated repression of lipid synthesis related to the mTORC1 signaling and Lipin 1 nuclear localization can be alleviated by CGA. Thus, our findings provide a novel mechanism by which lipid synthesis is regulated under S. aureus infection and the protective effects of CGA on lipid synthesis in BMECs.

9.
iScience ; 26(10): 107884, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766995

RESUMO

Streptococcus agalactiae (S. agalactiae) is a contagious obligate parasite of the udder in dairy cows. Here, we examined S. agalactiae-host interactions in bovine mammary epithelial cells (BMECs) in vitro. We found that S. agalactiae infected BMECs through laminin ß2 and integrin. Crk, Vps25, and RhoA were differentially expressed in S. agalactiae-infected cells. S. agalactiae infection activated FAK and Crk. FAK deficiency decreased the number of intracellular S. agalactiae and Crk activation. Knockdown of Crk or Vps25 increased the level of intracellular S. agalactiae, whereas its overexpression had the opposite effect. RhoA expression and actin cytoskeleton were altered in S. agalactiae-infected BMECs. Crk and Vps25 interact in cells, and invaded S. agalactiae also activates Crk, allowing it to cooperate with Vps25 to defend against intracellular infection by S. agalactiae. This study provides insights into the mechanism by which intracellular infection by S. agalactiae is regulated in BMECs.

10.
Mol Neurobiol ; 60(11): 6542-6555, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458989

RESUMO

Silica nanoparticles (SiNPs) have been widely used in industry, electronics, and pharmaceutical industries. In addition, it is also widely used in medicine, tumor treatment and diagnosis, as well as other biomedical and biotechnology fields. The opportunities for people to contact SiNPs through iatrogenic, occupational, and environmental exposures are gradually increasing. The damage and biological effects of SiNPs on the nervous system have attracted widespread attention in the field of toxicology. Central nerve cells are rich in mitochondria. It is suggested that the effects of SiNPs on mitochondrial damage of nerve cells may involve the maintenance of neuronal membrane potential, the synthesis and operation of neurotransmitters, and the transmission of nerve pulses, and so on. We established an experimental model of SH-SY5Y cells to detect the cell survival rate, apoptosis, changes of reactive oxygen species and mitochondrial membrane potential, and the expression of mitochondrial function-related enzymes and proteins, so as to reveal the possible mechanism of SiNPs on neuronal mitochondrial damage. It was found that SiNPs could cause oxidative damage to cells and mitochondria, destroy some normal functions of mitochondria, and induce apoptosis in SH-SY5Y cells. The voltage-dependent anion channel 1(VDAC1) protein inhibitor DIDS could effectively reduce intracellular oxidative stress, such as the reduction of ROS content, and could also usefully restore some functional proteins of mitochondria to normal levels. The inhibition of VDAC1 protein may play an important role in the oxidative damage and dysfunction of neuronal mitochondria induced by SiNPs.


Assuntos
Nanopartículas , Neuroblastoma , Humanos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Linhagem Celular Tumoral , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Apoptose , Nanopartículas/toxicidade , Potencial da Membrana Mitocondrial
11.
Front Immunol ; 14: 1159061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377954

RESUMO

CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.


Assuntos
Neoplasias Peritoneais , Neoplasias Gástricas , Feminino , Humanos , Peritônio , Células Endoteliais , Fosfatidilinositol 3-Quinases
12.
Eur J Med Chem ; 258: 115536, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295260

RESUMO

ONS donor ligands L1-L4 were utilized in the preparation of monofunctional dimetallic Ru(η6-arene) complexes (C1-C4). These ONS donor ligand based novel tricoordinated Ru(II) complexes bearing η6-arene co-ligand were prepared for the first time. The current methodology resulted in excellent isolated yields and these complexes were characterized in detail by different spectroscopic and spectrometric techniques. The structures of C1-C2 and C4 were characterized in solid state by single crystal X-ray analysis. The in vitro anticancer analyses showed these novel complexes suppressed the growth of breast (MCF-7), liver (HepG2) and lung (A549) cancer cells. C2 suppressed the growth of these cells in dose-dependent manner revealed form the MTT and crystal violet cell viability assays. Moreover, C2 was observed the most potent complex that was used further in detailed mechanistic analyses in cancer cells. C2 showed good cytotoxic activity at 10 µM dose level as compared to cisplatin or oxaliplatin in these cancer cells. We observed morphological changes in cancer cells upon treatment with C2. Moreover, C2 suppressed the invasion and migration ability of cancer cells. C2 induced cellular senescence to retard cell growth and suppressed the formation of cancer stem cells. Importantly, C2 showed synergistic anticancer effect in combination with cisplatin and Vitamin C to further inhibit cell growth which suggested the potential role of C2 in cancer therapy. Mechanistically, C2 inhibited NOTCH1 dependent signaling pathway to suppress cancer cell invasion, migration and cancer stem cells formation. Thus, these data suggested potential role of C2 in cancer therapy by targeting NOTCH1-dependent signaling to suppress tumorigenesis. The results obtained in this study for these novel monofunctional dimetallic Ru(η6-arene) complexes showed their high anticancer potency and this study will pave to further cytotoxicity exploration on this class of complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Cisplatino/farmacologia , Ácido Ascórbico/farmacologia , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais
13.
Gastric Cancer ; 26(4): 528-541, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36959335

RESUMO

Gastric cancer (GC) is one of the most common malignancies in China and is associated with high mortality. The occurrence and development of gastric cancer are related to genetic and environmental factors. Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor protein tyrosine kinase that is activated by the extracellular matrix and growth factors. FAK is highly expressed in cancer and promotes its development by regulating cancer cell proliferation, migration, and angiogenesis. The expression of IL-8 is increased in many types of malignant tumor cells and is linked to their proliferation, migration, invasion, angiogenesis, and EMT. In this study, we found FAK to be essential for the proliferation, migration, and peritoneal metastasis of gastric cancer cells. To examine the molecular regulatory mechanisms of FAK in the peritoneal dissemination of gastric cancer, we performed RNA-seq analysis of MKN-45-FAK-/- and MKN45 cells and demonstrated that IL-8 was downregulated in FAK-deficient cells. Conversely, we confirmed that IL-8 activates FAK activity. We established that IL-8 promotes the proliferation, colony formation, and migration of gastric cancer cells that are partially mediated by FAK. Thus, we propose that an IL-8-FAK-IL-8 positive feedback loop effects the proliferation and migration of gastric cancer cells.


Assuntos
Neoplasias Gástricas , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Neoplasias Gástricas/patologia , Interleucina-8/genética , Proliferação de Células , Movimento Celular/genética , Linhagem Celular Tumoral
14.
Eur J Med Chem ; 249: 115164, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36758451

RESUMO

Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.


Assuntos
Oligossacarídeos , Polissacarídeos , Humanos , Glicosilação , Oligossacarídeos/química , Glicoconjugados/química , Química Farmacêutica
15.
Environ Toxicol ; 38(2): 472-482, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36330985

RESUMO

The study aimed to explore the role and mechanism of unfolded protein response (UPR) in methylmercury (MeHg)-induced Mouse Spermatocytes (GC-2spd[ts]) apoptosis. Methods such as MTT, flow cytometry, and Western Blot were used to evaluate the cell viability, membrane potential (MMP), reactive oxygen species (ROS), calcium ion (Ca2+ ), rate of cell apoptosis, and the expression of apoptosis-related and UPR-related protein. The results showed that with the increase of MeHg concentration, cell viability and MMP decreased, ROS, Ca2+ , rate of cell apoptosis, and the expression of apoptosis-related protein and UPR-related protein increased. To further explore the effect of ROS-induced oxidative damage on it, the ROS inhibitor N-acetyl-L-cysteine (NAC) was used. The effects of MeHg on germ cell (GC-2) cells were partially inhibited after NAC pretreatment. Our present study proved that MeHg might induce cell apoptosis by activating the UPR signaling pathway in GC-2 cells and affect normal reproductive function.


Assuntos
Compostos de Metilmercúrio , Espermatócitos , Masculino , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Espermatócitos/metabolismo , Compostos de Metilmercúrio/toxicidade , Estresse Oxidativo , Apoptose , Resposta a Proteínas não Dobradas , Transdução de Sinais
16.
Eur J Med Chem ; 245(Pt 1): 114892, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334326

RESUMO

Cistanche deserticola is a traditional and precious Chinese herbal medicine, known as "desert ginseng", with anti-inflammatory, anti-oxidant, improving immunity, nourishing the kidneys and other pharmacological effects. Its chemical components mainly include phenylethanol glycosides, iridoids, polysaccharides and volatile components, among which polysaccharides have received extensive attention due to their biological activities such as regulating immune activity, anti-aging, anti-spleen deficiency and antitumor. In recent years, a large number of research have been carried out on the extraction and isolation, chemical structure analysis and biological activity of Cistanche deserticola polysaccharides. The methods of polysaccharide extraction mainly include traditional extraction method, ultrasonic assisted method, microwave assisted method and enzyme assisted method, etc. The extracted polysaccharides were analyzed by chemical methods including methylation, acid hydrolysis and Smith degradation and spectroscopy methods such as NMR and IR. A variety of polysaccharides with new structures were obtained, and some polysaccharides with known structures were also investigated for their biological activities and their structure-activity relationships. However, the relationship between polysaccharides structure and their biological activities is still unclear due to the large number of polysaccharide components, their complex structures and the lack of systematic research and analysis on them. It is expected that the subsequent study of polysaccharide structure and active conformational relationship will be highly valuable for the application of Cistanche deserticola in pharmaceutical sciences and health food.


Assuntos
Cistanche , Medicamentos de Ervas Chinesas , Polissacarídeos , Cistanche/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia
17.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232856

RESUMO

As a result of antibiotic overuse, bacterial antibiotic resistance has become a severe threat to worldwide public health. The development of more effective antimicrobial therapies and alternative antibiotic strategies is urgently required. The role played by bacterial membrane vesicles (BMVs) in antibiotic resistance has become a current focus of research. BMVs are nanoparticles derived from the membrane components of Gram-negative and Gram-positive bacteria and contain diverse components originating from the cell envelope and cytoplasm. Antibiotic stress stimulates the secretion of BMVs. BMVs promote and mediate antibiotic resistance by multiple mechanisms. BMVs have been investigated as conceptually new antibiotics and drug-delivery vehicles. In this article, we outline the research related to BMVs and antibiotic resistance as a reference for the intentional use of BMVs to combat antibiotic resistance.


Assuntos
Anti-Infecciosos , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Membrana Celular , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla
18.
Front Immunol ; 13: 987419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159867

RESUMO

Cancer represents a serious concern for human life and health. Due to drug resistance and the easy metastasis of tumors, there is urgent need to develop new cancer treatment methods beyond the traditional radiotherapy, chemotherapy, and surgery. Bacterial outer membrane vesicles (OMVs) are a type of double-membrane vesicle secreted by Gram-negative bacteria in the process of growth and life, and play extremely important roles in the survival and invasion of those bacteria. In particular, OMVs contain a large number of immunogenic components associated with their parent bacterium, which can be used as vaccines, adjuvants, and vectors to treat diseases, especially in presenting tumor antigens or targeted therapy with small-molecule drugs. Some OMV-based vaccines are already on the market and have demonstrated good therapeutic effect on the corresponding diseases. OMV-based vaccines for cancer are also being studied, and some are already in clinical trials. This paper reviews bacterial outer membrane vesicles, their interaction with host cells, and their applications in tumor vaccines.


Assuntos
Vacinas Anticâncer , Antígenos de Neoplasias , Membrana Externa Bacteriana , Proteínas da Membrana Bacteriana Externa , Bactérias Gram-Negativas , Humanos
19.
Microb Pathog ; 171: 105726, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35995255

RESUMO

Staphylococcus aureus (S. aureus) is a major mastitis-causing pathogen in dairy cows. Dairy cows with mastitis suffer from a decrease in milk yield and protein content. Chlorogenic acid (CGA) is a natural product with anti-inflammatory effects. In this study, we examined the function and mechanism of CGA with regard to its anti-inflammatory effects and evaluated its protective function in milk protein synthesis in bovine mammary epithelial cells (BMECs). BMECs were cultured with and without infection by S. aureus and CGA, and extracellular inflammatory cytokines and amino acids in the medium and milk proteins were determined by ELISA. The function of IL-10RA in anti-inflammatory processes and of SF-1 in milk protein synthesis was assessed by gene silencing. The activity of mTORC1, NF-κB, and STAT5 was examined by western blot. S. aureus caused intracellular infection and upregulated TNF-α, IL-1ß, IL-6, and IL-8, whereas uptake of amino acids and milk protein synthesis were suppressed. CGA mitigated the S. aureus-induced inflammatory response and milk protein synthesis in vitro and in vivo. CGA alleviated S. aureus-induced inhibition of mTORC1 and STAT5 and upregulated IL-10 and IL-10RA. In addition, SF-1 was predicted to be a transcription factor of the milk protein-encoding genes α-LA, ß-LG, and CSN2. S. aureus downregulated SF-1 and CGA reversed the decline in milk protein synthesis due to SF-1 knockdown. Thus, CGA mitigates the inflammatory response that is induced by S. aureus and protects the uptake of amino acids and milk protein synthesis in BMECs.


Assuntos
Ácido Clorogênico , Mastite Bovina , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Anti-Inflamatórios/farmacologia , Bovinos , Ácido Clorogênico/farmacologia , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/tratamento farmacológico , Mastite Bovina/microbiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas do Leite/metabolismo , Fator de Transcrição STAT5 , Infecções Estafilocócicas/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
20.
Foods ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35885395

RESUMO

After being treated with protease K, peptides extracted from donkey blood were separated, identified, and characterized. The results showed that Sephadex G-25 medium purified with MW < 3 kDa had the highest dipeptidyl peptidase IV (DPP-IV) inhibition capacity. Three-hundred-and-thirty-four peptides were identified with UPLC−MS/MS. Peptide Ranker and molecular docking analysis were used to screen active peptides, and 16 peptides were finalized out of the 334. The results showed that the lowest binding energy between P7(YPWTQ) and DPP-IV was −9.1, and the second-lowest binding energy between P1(VDPENFRLL) and DPP-IV was −8.7. The active peptides(MW < 3 kDa) could cause a reduction in the fasting blood glucose levels of type 2 diabetic mice, improve glucose tolerance, and facilitate healing of the damaged structure of diabetic murine liver and pancreas. Meanwhile, the peptides were found to ameliorate the diabetic murine intestinal micro-ecological environment to a certain extent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA