RESUMO
The three-body fragmentation dynamics of benzene trications C6H63+ induced by 200 eV electron-impact produced by a photoemission cathode is investigated. All three fragment ions are detected in coincidence, and their momentum vectors are determined by employing a COLTRIMS reaction microscope. The detailed kinematical information of three deprotonation fragmentation channels of H+ + C3H2+ + C3H3+, H+ + C2H3+ + C4H2+, and H+ + C2H2+ + C4H3+ are obtained. By analyzing the momentum and energy correlation spectra among all the three fragment ions, we find that all the three channels are primarily generated by sequential fragmentation processes. Each channel has two deprotonation pathways, corresponding to proton emission in the first or second step of sequential fragmentation, respectively. These results provide insight into the mechanisms and dynamics of deprotonation and ring-breaking reactions in the three-body fragmentation processes of aromatic ring molecules.
RESUMO
Despite the widely recognized importance of noncovalent interactions involving aromatic rings in many fields, our understanding of the underlying forces and structural patterns, especially the impact of heteroaromaticity, is still incomplete. Here, we investigate the relaxation processes that follow inner-valence ionization in a range of molecular dimers involving various combinations of benzene, pyridine, and pyrimidine, which initiate an ultrafast intermolecular Coulombic decay process. Multiparticle coincidence momentum spectroscopy, combined with ab initio calculations, enables us to explore the principal orientations of these fundamental dimers and, thus, to elucidate the influence of N heteroatoms on the relative preference of the aromatic π-stacking, H-bonding, and CH-π interactions and their dependence on the number of nitrogen atoms in the rings. Our studies reveal a sensitive tool for the structural imaging of molecular complexes and provide a more complete understanding of the effects of N heteroatoms on the noncovalent aromatic interactions at the molecular level.
RESUMO
The inner-valence ionization and fragmentation dynamics of CH4-C6H6dimer induced by 200 eV electron impact is studied utilizing a multi-particle coincidence momentum spectroscopy. The three-dimensional momentum vectors and kinetic energy release (KER) of the CH4++C6H6+ion pairs are obtained by coincident momentum measurement. Our analysis on the absolute cross sections indicates that the intermediate dication CH4+-C6H6+is preferentially produced by the removal of an inner-valence electron from CH4or C6H6and subsequent relaxation of ultrafast intermolecular Coulombic decay followed by two-body Coulomb explosion. Combining withab initiomolecular dynamics (AIMD) simulations, the real-time fragmentation dynamics including translational, vibrational and rotational motions are presented as a function of propagation time. The revealed fragmentation dynamics are expected to have a potential implication for crystal structure imaging with various radiation sources.
RESUMO
We investigate the ultrafast energy and charge transfer processes between ammonia molecules following ionization reactions initiated by electron impact. Exploring ionization-induced processes in molecular clusters provides us with a detailed insight into the dynamics using experiments in the energy domain. We ionize the ammonia dimer with 200 eV electrons and apply the fragment ions coincident momentum spectroscopy and nonadiabatic molecular dynamics simulations. We identify two mechanisms leading to the doubly charged ammonia dimer. In the first one, a single molecule is ionized. This initiates an ultrafast proton transfer process, leading to the formation of the NH2+ + NH4+ pair. Alternatively, a dimer with a delocalized charge is formed dominantly via the intermolecular Coulombic decay, forming the NH3+·NH3+ dication. This dication further dissociates into two NH3+ cations. The ab initio calculations have reproduced the measured kinetic energy release of the ion pairs and revealed the dynamical processes following the double ionization.
RESUMO
Intermolecular interactions involving aromatic rings are ubiquitous in biochemistry and they govern the properties of many organic materials. Nevertheless, our understanding of the structures and dynamics of aromatic clusters remains incomplete, in particular for systems beyond the dimers, despite their high presence in many macromolecular systems such as DNA and proteins. Here, we study the fragmentation dynamics of benzene trimer that represents a prototype of higher-order aromatic clusters. The trimers are initially ionized by electron-collision with the creation of a deep-lying carbon 2s-1 state or one outer-valence and one inner-valence vacancies at two separate molecules. The system can thus relax via ultrafast intermolecular decay mechanisms, leading to the formation of C[Formula: see text]C[Formula: see text]C[Formula: see text] trications and followed by a concerted three-body Coulomb explosion. Triple-coincidence ion momentum spectroscopy, accompanied by ab-initio calculations and further supported by strong-field laser experiments, allows us to elucidate the details on the fragmentation dynamics of benzene trimers.
Assuntos
Benzeno , Elétrons , Fenômenos Químicos , DNARESUMO
Recently, tunnel junction devices adopting semiconducting Nb:SrTiO3 electrodes have attracted considerable attention for their potential applications in resistive data storage and neuromorphic computing. In this work, we report on a comparative study of Pt/insulator/Nb:SrTiO3 tunnel junctions between ferroelectric BaTiO3 and nonferroelectric SrTiO3 and LaAlO3 barriers to reveal the role of polarization in resistance switching properties. Although hysteretic behaviors appear in current-voltage measurements of all devices regardless of the barrier character, significantly improved current ratios by more than three orders of magnitude are observed in the Pt/BaTiO3/Nb:SrTiO3 tunnel junctions due to the dominance of polarization in modulation of junction barrier profiles between the low and high resistance states. The switchable polarization also gives rise to enhanced resistance retention since the electron diffusion that smears the barrier contrast of the bistable resistance states is suppressed by the polar BaTiO3/Nb:SrTiO3 interface associated with the ferroelectric bound charges. These polarization-induced effects are absent in the nonferroelectric Pt/SrTiO3/Nb:SrTiO3 and Pt/LaAlO3/Nb:SrTiO3 devices in which serious resistance state decay, described by Fick's second law, is observed since there are no switchable interface charges on SrTiO3/Nb:SrTiO3 and LaAlO3/Nb:SrTiO3 to block the electron diffusion. In addition, the Pt/BaTiO3/Nb:SrTiO3 device also exhibits an excellent switching endurance up to â¼4.0 × 106 bipolar cycles. These enhancements indicate the importance of ferroelectric polarization for achieving high-performance resistance switching and suggest that metal/ferroelectric/Nb:SrTiO3 tunnel junctions are promising candidates for nonvolatile memory applications.