Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 241: 114020, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878659

RESUMO

Gene delivery presents great potential in endothelium regeneration and prevention of vascular diseases, but its outcome is inevitably limited by high shear stress and instable microenvironment. Highly efficient nanosystems may alleviate the problem with strong dual-specificity for diseased site and targeted cells. Hence, biomimetic coatings incorporating EC-targeting peptides were constructed by platelets and endothelial cells (ECs) for surface modification. A series of biomimetic gene complexes were fabricated by the biomimetic coatings to deliver pcDNA3.1-VEGF165 plasmid (pVEGF) for rapid recovery of endothelium. The gene complexes possessed good biocompatibility with macrophages, stability with serum and showed no evident cytotoxicity for ECs even at very high concentrations. Furthermore, the peptide modified gene complexes achieved selective internalization in ECs and significant accumulation in endothelium-injured site, especially the REDV-modified and EC-derived gene complexes. They substantially enhanced VEGF expression at mRNA and protein levels, thereby enabling a wound to heal completely within 24 h according to wound healing assay. In an artery endothelium-injured mouse model, the REDV-modified and EC-derived gene complexes presented efficient re-endothelialization with the help of enhanced specificity. The biomimetic gene complexes offer an efficient dual-targeting strategy for rapid recovery of endothelium, and hold potential in vascular tissue regeneration.

2.
Macromol Biosci ; 23(7): e2200537, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36872633

RESUMO

Cell-based nanotherapy holds great potential to transform diagnosis and treatment patterns for human diseases, especially for cardiovascular diseases (CVDs). Surface coating with cell membrane has become a powerful strategy for functionalization of therapeutic nanoparticles to achieve biological performances of superior biocompatibility, immune evasion, and specificity. Additionally, extracellular vesicles (EVs) play key roles in the progression of CVDs with their ability of transferring cargos to distant tissues, thus emerging as an appealing option for the diagnosis and therapy of CVDs. In this review, recent progress in cell-based nanotherapy for CVDs is summarized, and different sources of EVs and biomimetic nanoplatforms derived from natural cells are highlighted. Meanwhile, their promising biomedical applications in the diagnosis and targeted treatment of different CVDs are also provided, followed by a discussion of their potential challenges and future prospects.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Nanopartículas , Humanos , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/metabolismo , Nanopartículas/uso terapêutico , Membrana Celular
3.
Acta Biomater ; 142: 221-241, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35151926

RESUMO

Re-endothelialization is a critical problem to inhibit postoperative restenosis, and gene delivery exhibits great potential in rapid endothelialization. Unfortunately, the therapeutic effect is enormously limited by inefficient specificity, poor biocompatibility and in vivo stability owing largely to the complicated in vivo environment. Herein, we developed a series of platelet membrane (PM) cloaked gene complexes based on natural bovine serum albumin (BSA) and polyethyleneimine (PEI). The gene complexes aimed to accelerate re-endothelialization for anti-restenosis via pcDNA3.1-VEGF165 (VEGF) plasmid delivery. Based on BSA and PM coating, these gene complexes exhibited good biocompatibility, stability with serum and robust homing to endothelium-injured site inherited from platelets. Besides, they enhanced the expression of VEGF protein by their high internalization and nucleus accumulation efficiency, and also substantially promoted migration and proliferation of vascular endothelial cells. The biological properties were further optimized via altering PEI and PM content. Finally, rapid recovery of endothelium in a carotid artery injured mouse model (79% re-endothelialization compared with model group) was achieved through two weeks' treatment by the PM cloaked gene complexes. High level of expressed VEGF in vivo was also realized by the gene complexes. Moreover, neointimal hyperplasia (IH) was significantly inhibited by the gene complexes according to in vivo study. The results verified the great potential of the PM cloaked gene complexes in re-endothelialization for anti-restenosis. STATEMENT OF SIGNIFICANCE: Rapid re-endothelialization is a major challenge to inhibit postoperative restenosis. Herein, a series of biodegradable and biocompatible platelet membrane (PM) cloaked gene complexes were designed to accelerate re-endothelialization for anti-restenosis via pcDNA3.1-VEGF165 (VEGF) plasmid delivery. The PM cloaked gene complexes provided high VEGF expression in vascular endothelial cells (VECs), rapid migration and proliferation of VECs and robust homing to endothelium-injured site. In a carotid artery injured mouse model, PM cloaked gene complexes significantly promoted VEGF expression in vivo, accelerated re-endothelialization and inhibited neointimal hyperplasia due to their good biocompatibility and superior specificity. Overall, the optimized PM cloaked gene complexes overcomes multiple obstacles in gene delivery for re-endothelialization and can be a promising candidate for gene delivery and therapy of postoperative restenosis.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Animais , Biomimética , Proliferação de Células , Constrição Patológica/metabolismo , Endotélio Vascular/metabolismo , Hiperplasia/patologia , Camundongos , Neointima/metabolismo , Soroalbumina Bovina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Food Sci Nutr ; 9(12): 6480-6491, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34925779

RESUMO

Cyanidin-3-O-glucoside (C3G) is a kind of water-soluble pigment widely existing in many plants. It has strong antioxidant and anti-inflammatory activities. However, C3G cannot exist stably for a long time because of the phenolic hydroxyl groups in its structure. Liposome technology could improve the stability and bioavailability of compounds. Based on our previous studies, C3G liposomes prepared by ethanol injection method have a certain stability in two weeks of storage. In this study, THP-1 macrophages treated with C3G and C3G liposomes can reduce the levels of inflammatory-related factors, such as tumor necrosis factor-a (TNF-a), interleukin (IL)-1ß, IL-6, and IL-8, stimulated by lipopolysaccharide (LPS). Further studies showed that the LPS induction could increase the level of phosphorylated nuclear transcription factor NF-κB and phosphorylated IkBa, while C3G and C3G liposomes could inhibit the expression of phosphorylated proteins. Moreover, C3G and C3G liposomes could protect macrophages from apoptosis. In conclusion, C3G prepared by liposome technology exhibits anti-inflammatory activity, which provides a theoretical basis for the food industry to study functional food.

5.
Front Chem ; 9: 758844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733822

RESUMO

Currently, stretchable hydrogel has attracted great attention in the field of wearable flexible sensors. However, fabricating flexible hydrogel sensor simultaneously with superstretchability, high mechanical strength, remarkable self-healing ability, excellent anti-freezing and sensing features via a facile method remains a huge challenge. Herein, a fully physically linked poly(hydroxyethyl acrylamide)-gelatin-glycerol-lithium chloride (PHEAA-GE-Gl-LiCl) double network organohydrogel is prepared via a simple one-pot heating-cooling-photopolymerization method. The prepared PHEAA-GE-Gl-LiCl organohydrogel exhibits favorable stretchability (970%) and remarkable self-healing property. Meanwhile, due to the presence of glycerol and LiCl, the PHEAA-GE-Gl-LiCl organohydrogel possesses outstanding anti-freezing capability, it can maintain excellent stretchability (608%) and conductivity (0.102 S/m) even at -40°C. In addition, the PHEAA-GE-Gl-LiCl organohydrogel-based strain sensor is capable of repeatedly and stably detecting and monitoring both large-scale human motions and subtle physiological signals in a wide temperature range (from -40°C to 25°C). More importantly, the PHEAA-GE-Gl-LiCl organohydrogel-based sensor displays excellent strain sensitivity (GF = 13.16 at 500% strain), fast response time (300 ms), and outstanding repeatability. Based on these super characteristics, it is envisioned that PHEAA-GE-Gl-LiCl organohydrogel holds promising potentials as wearable strain sensor.

6.
Mater Sci Eng C Mater Biol Appl ; 119: 111553, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321617

RESUMO

Strong specificity for cancer cells is still the main challenge to deliver drugs for the therapy of cancer. Herein, we developed a convenient strategy to prepare a series of 5-boronopicolinic acid (BA) modified tumor-targeting drug delivery systems (T-DDSs) with strong tumor targeting function. An anti-tumor drug of camptothecin (CPT) was encapsulated into poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-PEI) to form drug-loaded nanoparticles (NP/CPT). Then, the surface of NP/CPT was coated by BA with different polymer and BA molar ratios of 1:1, 1:5, 1:10 and 1:20 via electrostatic interaction to obtain T-DDSs with enhanced biocompatibility and specificity for tumor cells. The introduced BA can endow drug-loaded NPs with high targeting ability to tumor cells because of the overexpression of sialic acids (SA) in tumor cells, which possessed strong interaction with BA. Those T-DDSs exhibited good biocompatibility according to the results of MTT assay, hemolysis test and cellular uptake. Moreover, they were capable of decreasing the viability of breast cancer cell line 4T1 and MCF-7 cells with no obvious cytotoxicity for endothelial cells. Especially, T-DDS with 1:20 molar ratio displayed much higher cellular uptake than other groups, and also exhibited highly efficient in vivo anti-tumor effect. The significantly high targeting function and biocompatibility of T-DDSs improved their drug delivery efficiency and achieved good anti-tumor effect. The BA decorated T-DDSs provides a simple and robust strategy for the design and preparation of DDSs with good biocompatibility and strong tumor-specificity to promote drug delivery efficiency.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Células Endoteliais , Humanos , Polímeros
7.
Colloids Surf B Biointerfaces ; 191: 110980, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32252000

RESUMO

Rheumatoid arthritis (RA) is a kind of systemic autoimmune disease, and patients with RA usually suffer serious pain, resulting in low quality of life. The development of drug delivery systems (DDSs) provides a valid approach for RA therapy via inhibiting the secretion of inflammatory cytokines from macrophages. As a prevailing drug nanocarrier with distinctive superiority, polymeric nanoparticles (NPs) have attracted much attention in recent years. However, low biocompatibility and limited exploitation of drug with high efficiency are still the main challenges in RA treatment. To overcome the limitations, we prepared a biocompatible copolymer methoxy-poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA). Moreover, benzoylaconitine (BAC) with superior anti-inflammatory effect was selected as model drug. It was isolated from Aconitum kusnezoffii Reichb and encapsulated into mPEG-PLGA NPs (NP/BAC) to increase the bioavailablity of BAC. The NPs exhibited high cytocompatibility for activated macrophages and well compatibility with red blood cells. Furthermore, the anti-inflammatory property of NP/BAC was testified by substantially inhibiting secretion of pro-inflammatory cytokines. The TNF-α and IL-1ß cytokines of NP/BAC group reduced 70 % and 66 % compared with that of activated macrophages. Especially, NP/BAC reduced the overexpression of NF-κB p65 to inhibit NF-κB signaling pathway, which was a critical regulator of inflammatory responses. NP/BAC also showed efficient in vivo anti-inflammatory effect with high ear (69.8 %) and paw (87.1 %) swelling suppressing rate. These results revealed the anti-inflammatory mechanism of NP/BAC and proved it was a suitable DDS to suppress inflammation, providing a promising strategy for RA therapy and research of Aconitum kusnezoffii Reichb.


Assuntos
Aconitina/análogos & derivados , Sistemas de Liberação de Medicamentos , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Nanopartículas/administração & dosagem , Aconitina/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Citocinas/metabolismo , Edema/induzido quimicamente , Feminino , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , NF-kappa B/genética , Nanopartículas/química , Ratos
8.
Colloids Surf B Biointerfaces ; 184: 110510, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31561046

RESUMO

Rapid endothelialization on small diameter artificial blood vessels is an effective strategy to facilitate long-term patency and inhibit thrombosis. The gene delivery can enhance the proliferation and migration of endothelial cells (ECs), which is beneficial for rapid endothelialization. REDV-G-TAT-G-NLS-Cys (abbreviated as TP-G) peptide could weakly condense pEGFP-ZNF580 (pZNF580) and transfect ECs, but its transfection efficiency was still very low because of its low positive charge, low stability and weak endosome escape ability. In order to develop more stable and efficient gene carriers with low cytotoxicity, in the present study, we conjugated different amounts of TP-G peptide onto poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-g-PEI) amphiphilic copolymers via a hetero-poly(ethylene glycol) spacer (OPSS-PEG-NHS). The TP-G peptide and PEI could cooperatively and strongly condense pZNF580. The carrier's cytotoxicity was reduced by the introduction of poly(ethylene glycol) spacer. They condensed pZNF580 to form gene complexes (PPP-TP-G/pZNF580) with suitable size and positive zeta potential for gene delivery. The transfected ECs promoted their migration ability as demonstrated by cell migration assay. The results of cellular uptake and confocal laser scanning microscopy showed significantly high internalization efficiency, endosomal/lysosomal escape and nucleus location of pZNF580 by this multifunctional TP-G peptide sequence conjugated gene delivery system. Furthermore, several inhibitors were used to study the cellular uptake pathways of PPP-TP-G/pZNF580 complexes. The results showed that PPP-TP-G2/Cy5-oligonucleotide complexes exhibited the optimized endocytosis pathways which facilitated for cellular uptake. In conclusion, the multifunctional TP-G peptide conjugated gene carriers could promote the transfection efficiency due to the multifunction of REDV, cell-penetrating peptide and nuclear localization signal in the peptide sequence, which could be a suitable gene carrier for endothelialization.


Assuntos
Células Endoteliais/metabolismo , Técnicas de Transferência de Genes , Sinais de Localização Nuclear/metabolismo , Polímeros/química , Transfecção/métodos , Sequência de Aminoácidos , Linhagem Celular , Heterozigoto , Humanos , Sinais de Localização Nuclear/genética , Tamanho da Partícula , Propriedades de Superfície
9.
Macromol Rapid Commun ; 40(12): e1800916, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30990950

RESUMO

Multifunctional carriers with both gene transfection property and fluorescent tracking function have attracted significant attention in recent years. Herein, a kind of perylene diimide derivative (PDI-C10C8) is conjugated onto the polyethylenimine-g-poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-PEI) polymer to obtain fluorescent multifunctional polymer and micelles (abbreviated as MP). Then, the REDV-G-TAT-G-NLS (TP-G) peptide sequence is grafted onto this MP to obtain multifunctional micelles labeled by perylene diimide derivative (MP-TP-G). These micelles exhibit enhanced photobleaching stability compared with the reference Cy5-labeled micelles, and the fluorescent images of cellular uptake show bright red emission without any background noise. Confocal laser scanning microscope (CLSM) experiments show that gene complexes can deliver gene into nucleus. MP-TP-G carriers do not enter into the cell nucleus, which proves that the nuclear localization signal sequence may not exert its nucleus accumulation ability via conjugating to the amphiphilic polymers. The high transfection efficiency and the enhanced photobleaching stability, combined with the ability to monitor the detailed process of cellular uptake and gene delivery, make these multifunctional micelles have great potential application for endothelialization of artificial blood vessels and gene delivery process study.


Assuntos
Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Imidas/química , Perileno/química , Células Endoteliais/citologia , Humanos , Micelas , Polímeros/química
10.
J Nanobiotechnology ; 16(1): 29, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29580233

RESUMO

BACKGROUND: Gene therapy has been developed and used in medical treatment for many years, especially for the enhancement of endothelialization and angiogenesis. But slow endosomal escape rate is still one of the major barriers to successful gene delivery. In order to evaluate whether introducing oligohistidine (Hn) sequence into gene carriers can promote endosomal escape and gene transfection or not, we designed and synthesized Arg-Glu-Asp-Val (REDV) peptide functionalized TAT-NLS-Hn (TAT: typical cell-penetrating peptide, NLS: nuclear localization signals, Hn: oligohistidine sequence, n: 4, 8 and 12) peptides with different Hn sequence lengths. pEGFP-ZNF580 (pZNF580) was condensed by these peptides to form gene complexes, which were used to transfect human umbilical vein endothelial cells (HUVECs). RESULTS: MTT assay showed that the gene complexes exhibited low cytotoxicity for HUVECs. The results of cellular uptake and co-localization ratio demonstrated that the gene complexes prepared from TAT-NLS-Hn with long Hn sequence (n = 12) benefited for high internalization efficiency of pZNF580. In addition, the results of western blot analysis and PCR assay of REDV-TAT-NLS-H12/pZNF580 complexes showed significantly enhanced gene expression at protein and mRNA level. Wound healing assay and transwell migration assay also confirmed the improved proliferation and migration ability of the transfected HUVECs by these complexes. Furthermore, the in vitro and in vivo angiogenesis assay illustrated that these complexes could promote the tube formation ability of HUVECs. CONCLUSION: The above results indicated that the delivery efficiency of pZNF580 and its expression could be enhanced by introducing Hn sequence into gene carriers. The Hn sequence in REDV-TAT-NLS-Hn is beneficial for high gene transfection. These REDV and Hn functionalized TAT-NLS peptides are promising gene carriers in gene therapy.


Assuntos
Peptídeos Penetradores de Células/química , Produtos do Gene tat/química , Histidina/química , Sinais de Localização Nuclear/química , Fatores de Transcrição/genética , Transfecção/métodos , Transporte Biológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Endossomos/metabolismo , Expressão Gênica , Produtos do Gene tat/farmacologia , Histidina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Sinais de Localização Nuclear/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Plasmídeos/química , Plasmídeos/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
11.
J Mater Chem B ; 6(25): 4251-4263, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254599

RESUMO

Biocompatibility, stability and high efficiency profiles are critical points for promoting the practical applications of gene delivery systems. The incorporation of cell-penetrating peptides (CPPs), REDV, and a nuclear localization signal (NLS) peptide sequence has been considered to be a promising strategy for developing efficient gene carriers to transfect vascular endothelial cells (ECs). However, these integrated multifunctional peptide carriers are usually limited by their inefficient targeting function and weak endosomal escape ability. Aiming to develop more efficient gene carriers, the integrated multifunctional REDV-G-TAT-G-NLS-C sequence was conjugated to polyhedral oligomeric silsesquioxane (POSS) by heterobifunctional poly(ethylene glycol) in the current study. This star-shaped polymer carrier complexed with the pZNF580 plasmid to form gene complexes, and then the histidine-rich peptide of REDV-TAT-NLS-H12 (TP-H12) was incorporated into their surface to obtain ternary gene delivery systems with enhanced endosomal escape ability. These ternary gene delivery systems exhibited low cytotoxicity towards ECs and possessed high REDV-mediated cellular uptake, excellent internalization efficiency, rapid endosomal escape and high nucleus translocation capacity. The endosomal escape of the ternary complexes was improved due to the pH buffering capacity of the histidine residue in TP-H12 and the optimized macropinocytosis internalization pathway. Moreover, these CPP-based ternary gene delivery systems have high gene delivery efficiency and could improve the migration of ECs as demonstrated by gene expression and transwell assay. These systems may serve as a promising candidate for gene delivery and transfection in ECs, which is advantageous for EC migration and endothelialization on the biomaterial surface.

12.
J Mater Chem B ; 6(37): 5975-5985, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254717

RESUMO

Recently, the red blood cell (RBC) membrane has been used as a mimetic nanocoating for nanoparticles for drug delivery systems to promote their biocompatibility. In the present study, the nano-sized RBC membrane was coated on the surface of gene complexes through electrostatic interactions to prepare biomimetic gene delivery systems so as to improve their biocompatibility and prolong their circulation time in vivo. The structure of the biomimetic gene delivery systems was determined by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). They exhibited low cytotoxicity and high transfection efficiency in endothelial cells (ECs), which could improve the migration ability of ECs. Besides, the biomimetic gene delivery systems exhibited strong immune evasion and long in vivo circulation time. The phagocytic rate of these biomimetic gene delivery systems reduced 52% compared with that of the PLGA-PEI/pZNF580 control group (without RBC membrane modification). Their circulation time in vivo was more than 2 times higher than that of the control group. Consequently, we provide a simple method for the preparation of camouflaged gene delivery systems, which can further facilitate the development of a gene delivery platform for the therapy of vascular diseases via enhancing EC transfection. This strategy will open up a new avenue for gene delivery systems by RBC membrane camouflage.

13.
ACS Biomater Sci Eng ; 4(8): 2870-2878, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-33435010

RESUMO

Recently, polymeric micelles with different biodegradable hydrophobic cores, such as poly(lactide-co-glycolide) (PLGA) and poly(lactide-co-3(S)-methyl-morpholine-2,5-dione) (PLMD), have been used for gene delivery. The biodegradable hydrophobic cores should play an important role in gene delivery. However, little research has focused on selectively promoting proliferation and migration of endothelial cells (ECs) as well as vascularization by altering hydrophobic cores of polymeric micelles. Herein, we prepared two kinds of CAGW peptide (selective adhesion for ECs) modified micelles with PLGA and PLMD as hydrophobic cores, respectively, and poly(ethylene glycol) (PEG) and polyethylenimine (PEI) as mixed hydrophilic shell. Their ability of condensing pEGFP-ZNF580 (pZNF580) to form gene complexes was proved by agarose gel electrophoresis assay. MTT results showed that the relative cell viability of the micelles with PLMD cores was higher than control groups and the micelles with PLGA cores. The cellular uptake ability of these CAGW modified gene complexes was higher than the complexes without CAGW target function. A similar trend was also found in transfection tests in vitro, which further demonstrated the effect of CAGW peptide and different hydrophobic cores on gene delivery. The number of migrated cells treated by the gene complexes with PLGA cores was 82 (nontarget group) and 115 (target group), whereas the complexes with PLMD cores was 88 (nontarget group) and 120 (target group). Capillary-like tube formation of CAGW peptide modified complexes with PLMD core group was much higher (about 6 times) than the PEI(10 kDa)/pZNF580 group. These results demonstrated that transfection efficiency, cell proliferation, migration, and vascularization could be promoted by altering hydrophobic cores and CAGW modification.

14.
Langmuir ; 33(46): 13315-13325, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29100464

RESUMO

In order to improve the transfection efficiency and reduce the cytotoxicity of gene carriers, many strategies have been used to develop novel gene carriers. In this study, five complex micelles (MSP(2 k), MSP(4 k), MSP(6 k), MSP(8 k), and MSP(10 k)) were prepared from methoxy-poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) (mPEG-b-PLGA) and sorbitol-poly(d,l-lactide-co-glycolide)-graft-PEI (sorbitol-PLGA-g-PEI, where the designed molecular weights of PLGA chains were 2 kDa, 4 kDa, 6 kDa, 8 kDa, and 10 kDa, respectively) copolymers by a self-assembly method, and the mass ratio of mPEG-b-PLGA to sorbitol-PLGA-g-PEI was 1/3. These complex micelles and their gene complexes had appropriate sizes and zeta potentials, and pEGFP-ZNF580 (pDNA) could be efficiently internalized into EA.hy926 cells by their gene complexes (MSP(2 k)/pDNA, MSP(4 k)/pDNA, MSP(6 k)/pDNA, MSP(8 k)/pDNA, and MSP(10 k)/pDNA). The MTT assay results demonstrated that the gene complexes had low cytotoxicity in vitro. When the hydrophobic PLGA chain increased above 6 kDa, the gene complexes showed higher performance than that prepared from short hydrophobic chains. Moreover, the relative ZNF580 protein expression levels in MSP(6 k)/pDNA, MSP(8 k)/pDNA, and MSP(10 k)/pDNA) groups were 79.6%, 71.2%, and 73%, respectively. These gene complexes could promote the transfection of endothelial cells, while providing important information and insight for the design of new and effective gene carriers to promote the proliferation and migration of endothelial cells.


Assuntos
Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , DNA , Células Endoteliais , Técnicas de Transferência de Genes , Tamanho da Partícula , Plasmídeos , Polietilenoglicóis , Polietilenoimina , Transfecção
15.
ACS Appl Mater Interfaces ; 9(41): 35613-35627, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28948764

RESUMO

Recently, gene therapy has attracted much attention, especially for the treatment of vascular disease. However, it is still challenging to develop the gene carriers with high biocompatibility as well as highly efficient gene delivery to overcome multiple barriers. Herein, a frequently used cell-penetrating peptide PKKKRKV (TAT) was selected as a functional sequence of the gene carrier with distinctive cell-penetrating ability. REDV peptide with selectively targeting function for endothelial cells (ECs) and nuclear localization signals (NLS) were integrated with this TAT peptide to obtain a highly efficient gene delivery system with ECs specificity and nucleus accumulation capacity. Besides, the glycine sequences with different repeat numbers were inserted into the above integrated peptide. These glycine sequences acted as a flexible spacer arm to exert the targeting, cell-penetrating, and nucleus accumulation functions of each functional peptide. Three tandem peptides REDV-Gm-TAT-Gm-NLS (m = 0, 1, and 4) complexed with pZNF580 plasmid to form gene complexes. The results of hemocompatibility and cytocompatibility indicated that these peptides and gene complexes were nontoxic and biocompatible. The internalization efficiency and mechanism of these gene complexes were investigated. The internalization efficiency was improved as the introduction of targeting REDV and glycine sequence, and the REDV-G4-TAT-G4-NLS/pZNF580 (TP-G4/pZNF580) complexes showed the highest cellular uptake among the gene complexes. The TP-G4/pZNF580 complexes also presented significantly higher internalization efficiency (∼1.36 times) in human umbilical vein endothelial cells (HUVECs) than human umbilical artery smooth muscle cells. TP-G4/pZNF580 complexes substantially promoted the expression of pZNF580 by confocal live cell imaging, gene delivery efficiency, and HUVECs migration assay. The in vitro and in vivo revascularization ability of transfected HUVECs was further enhanced obviously. In conclusion, these multifunctional REDV-Gm-TAT-Gm-NLS peptides offer a promising and efficacious delivery option for neovascularization to treat vascular diseases.


Assuntos
Neovascularização Patológica , Núcleo Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Sinais de Localização Nuclear , Transfecção
16.
Biomater Sci ; 5(3): 511-522, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28094352

RESUMO

In this work, a biodegradable star-shaped copolymer poly(lactide-co-3(S)-methyl-morpholine-2,5-dione)6 (Star-(PLMD)6) was synthesized via ring-opening polymerization (ROP), and subsequently a gene carrier Star-PLMD-g-PEI-g-PEG-CREDVW was prepared by grafting polyethyleneimine (PEI), polyethylene glycol (PEG) and targeting peptide REDV onto Star-(PLMD)6. This gene carrier could form stable micelles to condense pEGFP-ZNF580 through electrostatic interaction. The resulting complexes were biocompatible and showed high efficiency in gene delivery. In addition, these complexes exhibited high selectivity for endothelial cells (ECs), high transfection efficiency and enhanced migration of ECs. The protein level of ZNF580 expression was significantly high (up to 85%), while the control group was only 51%. This combination of degradability, targeting ligand and star-structure strategy exhibits a significant advantage in transfection efficiency and migration of ECs.


Assuntos
Movimento Celular , Células Endoteliais/citologia , Oligopeptídeos/química , Polietilenoimina/química , Fatores de Transcrição/genética , Transfecção/métodos , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Morfolinas/química , Poliésteres/química , Polietilenoglicóis/química
17.
ACS Appl Mater Interfaces ; 9(5): 4485-4497, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28117580

RESUMO

Gene therapy is a promising strategy for angiogenesis, but developing gene carriers with low cytotoxicity and high gene delivery efficiency in vivo is a key issue. In the present study, we synthesized the CAGW peptide- and poly(ethylene glycol) (PEG)-modified amphiphilic copolymers. CAGW peptide serves as a targeting ligand for endothelial cells (ECs). Different amounts of CAGW peptide were effectively conjugated to the amphiphilic copolymer via heterofunctional poly(ethylene glycol). These CAG- and PEG-modified copolymers could form nanoparticles (NPs) by self-assembly method and were used as gene carriers for the pEGFP-ZNF580 (pZNF580) plasmid. CAGW and PEG modification coordinately improved the hemocompatibility and cytocompatibility of NPs. The results of cellular uptake showed significantly enhanced internalization efficiency of pZNF580 after CAGW modification. Gene expression at mRNA and protein levels demonstrated that EC-targeted NPs possessed high gene delivery efficiency, especially the NPs with higher content of CAGW peptide (1.16 wt %). Furthermore, in vitro and in vivo vascularization assays also showed outstanding vascularization ability of human umbilical vein endothelial cells treated by the NP/pZNF580 complexes. This study demonstrates that the CAGW peptide-modified NP is a promising candidate for gene therapy in angiogenesis.


Assuntos
Peptídeos/química , Células Cultivadas , Portadores de Fármacos , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Nanopartículas , Neovascularização Fisiológica , Polietilenoglicóis , Fatores de Transcrição
18.
Int J Nanomedicine ; 12: 137-149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28053529

RESUMO

The gene transfection efficiency of polyethylenimine (PEI) varies with its molecular weight. Usually, high molecular weight of PEI means high gene transfection, as well as high cytotoxicity in gene delivery in vivo. In order to enhance the transfection efficiency and reduce the cytotoxicity of PEI-based gene carriers, a novel cationic gene carrier was developed by co-self-assembly of cationic copolymers. First, a star-shaped copolymer poly(3(S)-methyl-morpholine-2,5-dione-co-lactide) (P(MMD-co-LA)) was synthesized using D-sorbitol as an initiator, and the cationic copolymer (P(MMD-co-LA)-g-PEI) was obtained after grafting low-molecular weight PEI. Then, by co-self-assembly of this cationic copolymer and a diblock copolymer methoxy-poly(ethylene glycol) (mPEG)-b-P(MMD-co-LA), microparticles (MPs) were formed. The core of MPs consisted of a biodegradable block of P(MMD-co-LA), and the shell was formed by mPEG and PEI blocks. Finally, after condensation of pEGFP-ZNF580 by these MPs, the plasmids were protected from enzymatic hydrolysis effectively. The result indicated that pEGFP-ZNF580-loaded MP complexes were suitable for cellular uptake and gene transfection. When the mass ratio of mPEG-b-P(MMD-co-LA) to P(MMD-co-LA)-g-PEI reached 3/1, the cytotoxicity of the complexes was very low at low concentration (20 µg mL-1). Additionally, pEGFP-ZNF580 could be transported into endothelial cells (ECs) effectively via the complexes of MPs/pEGFP-ZNF580. Wound-healing assay showed that the transfected ECs recovered in 24 h. Cationic MPs designed in the present study could be used as an applicable gene carrier for the endothelialization of artificial blood vessels.


Assuntos
Materiais Biocompatíveis/química , Células Endoteliais/efeitos dos fármacos , Técnicas de Transferência de Genes , Morfolinas/química , Polietilenoglicóis/química , Fatores de Transcrição/química , Prótese Vascular , Cátions , Movimento Celular/efeitos dos fármacos , Proliferação de Células , DNA/genética , Terapia Genética , Vetores Genéticos , Proteínas de Fluorescência Verde/química , Humanos , Peso Molecular , Tamanho da Partícula , Plasmídeos , Polietilenoimina/química , Polímeros/química , Sefarose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Transfecção
19.
J Mater Chem B ; 5(8): 1673-1687, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263940

RESUMO

Gene delivery can enhance the endothelialization of biomaterial surfaces. However, the lack of efficient target function is still the major concern that hinders the clinical application of gene therapy. With the aim to develop a specific targeting gene carrier for endothelial cells (ECs), the Cys-Arg-Glu-Asp-Val-Trp (CREDVW) peptide was linked to the comb-like copolymer of poly(lactide-co-3(S)-methyl-morpholine-2,5-dione)-poly(poly(ethylene glycol) monomethacrylate) (PLMD-PPEGMA) to form the CREDVW modified copolymer PLMD-PPEGMA-CREDVW, which could enhance the special recognition of ECs. Mixed micelles were then prepared by co-assembling this comb-like copolymer and the amphiphilic grafting copolymer poly(lactide-co-3(S)-methyl-morpholine-2,5-dione)-g-polyethylenimine (PLMD-g-PEI). These mixed micelles with the CREDVW-functional peptide exhibited good pEGFP-ZNF580 (pDNA) binding ability and could condense it into complexes with proper size and positive zeta potential. The MTT results demonstrated the low cytotoxicity of the CREDVW-modified mixed micelle/pDNA complexes. The internalization efficiency of the CREDVW-modified complexes with targeting function was about two times higher than the dysfunctional CREVDW-modified complexes. Besides, the transfection efficiency of these complexes was more pronounced, compared to the control group, PEI(10 kDa)/pDNA, as detected by means of in vitro transfection studies. Western blot analysis demonstrated relatively high protein levels in the transfected cells by CREDVW-modified mixed micelle/pDNA complexes, up to 75%, in comparison to the control group (26%). In addition, the cell migration ability was significantly improved as demonstrated by the wound healing assay. These results indicated that the mixed micelles could act as an active targeting gene carrier, having both tunable gene transfection efficiency and low cytotoxicity, which are beneficial for the endothelialization of biomaterial surface.

20.
J Mater Chem B ; 5(40): 8035-8051, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264643

RESUMO

Non-viral gene carriers for gene therapy have been developed for many years. But the gene transfection is generally limited by deficient cellular uptake, low endo/lysosome escape, and weak nuclear translocation. Some targeting peptides have been conjugated onto gene carriers for highly efficient gene delivery. These targeting carriers can overcome some of these limitations to efficiently deliver therapeutic genes into desired cells. In this review, we will summarize the recent development of multi-targeting peptide immobilized non-viral gene carriers for efficient gene therapy, especially for the targeting and suppression of tumor cells, and the transfection and proliferation of endothelial cells. The peptide functionalization of gene carriers is a promising strategy to promote the elimination of solid tumors and the rapid endothelialization of artificial blood vessels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA