Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 120: 109478, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31568987

RESUMO

Resistance to chemotherapeutic agents is a major cause of treatment failure in patients with oral cancer. Proton pump inhibitors (PPIs), essentially H+-K+-ATPase inhibitors which are currently used in the treatment of acid related diseases, have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to investigate whether pantoprazole (PPZ, one of PPIs) could increase the sensitivity of chemoresistant oral epidermoid carcinoma cells (KB/V) to vincristine (VCR) and elucidate the underlying action mechanism. Results showed that combination treatment of PPZ and VCR synergistically inhibited the proliferation of KB/V cells in vitro and in vivo. Furthermore, administration of PPZ and VCR not only induce apoptosis and G2/M phase arrest in KB/V cells but also suppress the migration and invasion of KB/V cells. The mechanism underlying synergistic anti-tumor effect of PPZ and VCR was related to the inhibition of the function and expression of P-glycoprotein (P-gp) and the down-regulation of EGFR/MAPK and PI3K/Akt/mTOR signaling pathways in KB/V cells. Additionally, we observed that PPZ treatment induced an increase in lysosomal pH and inhibited the activity of lysosomal enzyme acid phosphatase in KB/V cells, which could functionally reduce the sequestration of VCR in lysosomes and sensitized KB/V cells to VCR. In conclusion, our study demonstrated that PPZ could be included in new combined therapy of human oral cancer (especially on VCR-resistant therapy) together with VCR.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Pantoprazol/farmacologia , Vincristina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células KB , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Bucais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Cell Stress Chaperones ; 24(1): 247-257, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632065

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is an excellent ornamental plant, which is usually stressed by summer high temperatures, but little is known about its relevant measures. In this study, the effects of trehalose on alleviating high temperature-induced damage in P. lactiflora were examined. High temperature stress in P. lactiflora increased production of reactive oxygen species (ROS), including superoxide anion free radical (O2·-) and hydrogen peroxide (H2O2), enhanced both malondialdehyde (MDA) content and relative electrical conductivity (REC), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, inhibited photosynthesis, and destroyed cell structure. However, exogenous trehalose effectively alleviated its high temperature-induced damage. Trehalose decreased O2·- and H2O2 accumulation, MDA content, and REC, increased the activities of antioxidant enzymes, enhanced photosynthesis, improved cell structure, and made chloroplasts rounder. Additionally, trehalose induced high temperature-tolerant-related gene expressions to different degrees. These results indicated that trehalose decreased the deleterious effect of high temperature stress on P. lactiflora growth by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. These findings indicate the potential application of trehalose for managing high temperatures in P. lactiflora cultivation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Antioxidantes/metabolismo , Citoproteção/efeitos dos fármacos , Temperatura Alta , Paeonia/fisiologia , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Trealose/farmacologia , Adaptação Fisiológica/genética , Clorofila/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Paeonia/efeitos dos fármacos , Paeonia/genética , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estresse Fisiológico/genética
3.
Lab Invest ; 98(12): 1642-1656, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171204

RESUMO

Tumor cell-endothelial adhesion is one of the key steps in tumor cell haematogenous dissemination in metastasis and was previously shown to be mediated by interaction of galectin-3 with the transmembrane mucin protein MUC1. In this study, the effect of exogenous as well as endogenous galectin-3 on adhesion of two cell lines (low MUC1-expressing human prostate cancer PC-3M cells and non-small-cell lung cancer A549 cells) to monolayer of umbilical vein endothelial cells (HUVECs) was investigated. We found that suppression of endogenous galectin-3 expression reduced tumor cell adhesion to HUVECs and also decreased cell invasion and migration. Exogenous galectin-3 promoted tumor cell adhesion to HUVECs by entering cells. Both exogenous and endogenous galectin-3 upregulated the expression of ß-catenin and increased ß-catenin nuclear accumulation, and subsequently upregulated the expression of N-cadherin and CD44. We deduced that both exogenous as well as endogenous galectin-3 promoted low MUC1-expressing cancer cell adhesion to HUVECs by increasing the expression of N-cadherin and CD44 via an increase of nuclear ß-catenin accumulation. These results were confirmed further by using a ß-catenin/TCF transcriptional activity inhibitor, N-cadherin or CD44 siRNAs. Taken together, our results suggest a new molecular mechanism of galectin-3-mediated cell adhesion in cancer metastasis.


Assuntos
Caderinas/metabolismo , Adesão Celular , Galectina 3/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/metabolismo , Células A549 , Animais , Movimento Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mucina-1/metabolismo , Metástase Neoplásica , Regulação para Cima , beta Catenina/metabolismo
4.
Sci Rep ; 7: 44926, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317945

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is popular worldwide because of its gorgeous flower colour, and the yellow flower is the rarest. However, its mechanism of yellow formation is still unexplored from the post-translational level. In this study, the anatomy of the petal, cell sap pH and metal elements were investigated in bicoloured flower cultivar 'Jinhui' with red outer-petal and yellow inner-petal, and the yellow formation was influenced by the anatomy of petal, while not by the cell sap pH and metal elements. Subsequently, microRNAs sequencing (miRNA-seq) was used to identify small RNAs (sRNAs). A total of 4,172,810 and 3,565,152 specific unique sRNAs were obtained, 207 and 204 conserved miRNAs and 38 and 42 novel miRNAs were identified from red outer-petal and yellow inner-petal, respectively, which were confirmed by subcloning. Among these miRNAs, 163 conserved and 28 novel miRNAs were differentially expressed in two wheel of petals. And 5 differentially expressed miRNAs and their corresponding target genes related to yellow formation were screened, and their dynamic expression patterns confirmed that the yellow formation might be under the regulation of miR156e-3p-targeted squamosa promoter binding protein-like gene (SPL1). These results improve the understanding of miRNA regulation of the yellow formation in P. lactiflora.


Assuntos
Flores/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Paeonia/genética , Pigmentação/genética , Transcriptoma , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Paeonia/anatomia & histologia , Paeonia/química , Paeonia/citologia , Compostos Fitoquímicos/química , Característica Quantitativa Herdável
5.
Int J Mol Sci ; 16(10): 24332-52, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26473855

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the "wedding flower". However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application.


Assuntos
Flores/crescimento & desenvolvimento , Paeonia/crescimento & desenvolvimento , Triazóis/farmacologia , Transporte Biológico/fisiologia , Parede Celular/metabolismo , Metabolismo Energético/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteômica
6.
Genes (Basel) ; 6(3): 918-34, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393656

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.), one of the world's most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs) play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA) libraries from two B. cinerea-infected P. lactiflora cultivars ("Zifengyu" and "Dafugui") with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from "Zifengyu" and "Dafugui", respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora.

7.
PLoS One ; 10(7): e0133305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208357

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE). Thousands of differentially expressed genes (DEGs) were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR) to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold.


Assuntos
Botrytis , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Paeonia/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Expressão Gênica , Perfilação da Expressão Gênica , Paeonia/microbiologia , Folhas de Planta/microbiologia , Transcriptoma
8.
Biochem Biophys Res Commun ; 459(3): 450-6, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25748574

RESUMO

Tree peony (Paeonia suffruticosa Andr.) has been named the "king of flowers" because of its elegant and gorgeous flower colour. Among these colours, the molecular mechanisms of white formation and how white turned to red in P. suffruticosa is little known. In this study, flower colour variables, flavonoid accumulation and expression of flavonoid biosynthetic genes of white ('Xueta') and red ('Caihui') P. suffruticosa were investigated. The results showed that the flower colours of both cultivars were gradually deepened with the development of flowers. Moreover, two anthoxanthin compositions apigenin 7-O-glucoside together with apigenin deoxyheso-hexoside were identified in 'Xueta' and 'Caihui', but one main anthocyanin composition peonidin 3,5-di-O-glucoside (Pn3G5G) was only found in 'Caihui'. Total contents of anthocyanins in 'Caihui' was increased during flower development, and the same trend was presented in anthoxanthins and flavonoids of these two cultivars, but the contents of these two category flavonoid in 'Caihui' were always higher than those in 'Xueta'. Furthermore, nine structural genes in flavonoid biosynthetic pathway were isolated including the full-length cDNAs of phenylalanine ammonialyase gene (PAL), chalcone synthase gene (CHS) and chalcone isomerase gene (CHI), together with the partial-length cDNAs of flavanone 3-hydroxylase gene (F3H), flavonoid 3'-hydroxylase gene (F3'H), dihydroflavonol 4-reductase gene (DFR), anthocyanidin synthase gene (ANS), UDP-glucose: flavonoid 3-O-glucosyltransferase gene (UF3GT) and UDP-glucose: flavonoid 5-O-glucosyltransferase gene (UF5GT), and PAL, UF3GT and UF5GT were reported in P. suffruticosa for the first time. Their expression patterns showed that transcription levels of downstream genes in 'Caihui' were basically higher than those in 'Xueta', especially PsDFR and PsANS, suggesting that these two genes may play a key role in the anthocyanin biosynthesis which resulted in the shift from white to red in flowers. These results would provide a better understanding of the underlying molecular mechanisms of flower pigmentation in P. suffruticosa.


Assuntos
Flavonoides/biossíntese , Flavonoides/genética , Paeonia/genética , Paeonia/metabolismo , Pigmentos Biológicos/biossíntese , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Paeonia/crescimento & desenvolvimento , Pigmentação/genética , Pigmentos Biológicos/análise , Pigmentos Biológicos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização por Electrospray
9.
Mol Biol Rep ; 41(10): 6493-503, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972572

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is an important ornamental plant that has different flower types. However, the molecular mechanism underlying its floral organ development has not been fully investigated. This study isolated six floral organ development-related genes in P. lactiflora, namely, APETALA1 (PlAP1), APETALA2 (PlAP2), APETALA3-1 (PlAP3-1), APETALA3-2 (PlAP3-2), PISTILLATA (PlPI) and SEPALLATA3 (PlSEP3). The expression patterns of these genes were also investigated in the three cultivars 'Hangshao', 'Xiangyangqihua' and 'Dafugui'. Furthermore, gene expression during floral development was also analyzed in different organs. The results showed that PlAP1 was mainly expressed in the sepals, and PlAP2 was mainly expressed in the carpels and sepals. PlAP3-2 and PlPI had the highest expression levels in the stamens, followed by the petals. The expression levels of PlAP3-1 (from highest to lowest) were in the following order: petals, stamens, carpels and sepals. PlSEP3 was mainly expressed in sepals and carpels. With the depth of stamen petaloidy, the expression levels of PlAP1, PlAP2 and PlSEP3 increased, whereas those of PlAP3-1, PlAP3-2 and PlPI decreased, which showed that PlAP1 mainly determined sepals and petals of P. lactiflora. The PlAP2 not only determined the sepals and petals, and it participated in carpel formation. PlAP3-1, PlAP3-2 and PlPI mainly determined stamens and petals. PlSEP3 determined the identities of sepals and petals. This study would help determine the molecular mechanism underlying floral organ development in P. lactiflora.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Paeonia/genética , Clonagem Molecular , Especificidade de Órgãos/genética , Fenótipo
10.
Plant Physiol Biochem ; 61: 187-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23141672

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is an important ornamental plant used in urban green spaces, but little is known about whether it can grow in a shaded environment or understory. In this study, effects of shade on plant growth and flower quality in the herbaceous peony were investigated. The results showed that P. lactiflora morphology parameters, including plant height, leaf number, stem diameter, branch number, node number and plant crown width, were higher in plants grown with sun exposure compared to those grown in shade; however, opposite trends were observed for the top and middle leaf areas of the plant. Compared with sun exposure, shade decreased P. lactiflora photosynthetic capacity, light saturation point (LSP) and light compensation point (LCP) and increased the apparent quantum yield (AQY), mainly due to declined stomatal conduction (Gs). These decreases caused the soluble sugar, soluble protein and malondialdehyde (MDA) contents to decline, which led to delayed initial flowering date, prolonged flowering time, reduced flower fresh weight, increased flower diameter and faded flower color. Through cloning and expression analysis of anthocyanin biosynthetic genes, we determined that the fading of flower color was the result of reduced anthocyanin content, which was caused by the combined activity of anthocyanin biosynthesis genes and, in particular, of the upstream phenylalanine ammonialyase gene (PlPAL) and chalcone synthase gene (PlCHS). These results could provide us with a theoretical basis for further application of P. lactiflora in the greening of urban spaces and an understanding of the mechanisms behind the changes induced by shade.


Assuntos
Escuridão , Flores , Expressão Gênica , Genes de Plantas , Paeonia/fisiologia , Fotossíntese , Estresse Fisiológico , Aciltransferases/genética , Aciltransferases/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Metabolismo dos Carboidratos , Clonagem Molecular , Cor , Flores/anatomia & histologia , Flores/metabolismo , Malondialdeído/metabolismo , Paeonia/anatomia & histologia , Paeonia/crescimento & desenvolvimento , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Estruturas Vegetais , Estresse Fisiológico/genética
11.
Int J Mol Sci ; 13(4): 4993-5009, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606025

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering.


Assuntos
Parede Celular/fisiologia , Inflorescência/fisiologia , Paeonia/fisiologia , Caules de Planta/fisiologia , Resistência à Tração/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Parede Celular/química , Parede Celular/metabolismo , Celulose/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inflorescência/citologia , Lignina/biossíntese , Dados de Sequência Molecular , Paeonia/anatomia & histologia , Paeonia/citologia , Caules de Planta/anatomia & histologia , Caules de Planta/citologia , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA