Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(45): 22033-22041, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31714554

RESUMO

Strong couplings between molecular excitons and metal plasmons bring advantages to effectively manipulate the optical properties of hybrid systems, including both absorption and fluorescence. In contrast to absorption behaviours, which have been quite well understood and can be categorized into different regimes such as Fano dip and Rabi splitting, the characteristics of fluorescence in strongly coupled hybrids remain largely unexplored. Quenching instead of the enhancement of fluorescence is usually observed in the corresponding experiments, and a theoretical model to deal with this phenomenon is still lacking. Herein, we demonstrate a largely enhanced fluorescence in a hybrid system with Cy5 dye molecules strongly coupled to Ag nanoparticle films, signified by the huge Rabi splitting absorption spectra. The plexciton Rabi splitting of the hybrids can be tuned from 320 meV to as large as 750 meV by adjusting both plasmon strength and molecular concentration. Moreover, when the excitation and emission wavelengths are respectively tuned to be resonant with the two Rabi peaks, the hybrid acting as a plexcitonic dual resonant antenna exhibits an enhanced fluorescence 44 times larger than that of the free dye molecule. We also develop a theoretical model to simultaneously study the characteristics of both the absorption and emission spectra, including the peak shifting and strength. These findings offer a new strategy to design and fabricate plexcitonic devices with tunable optical responses and efficient fluorescence.

2.
Nanoscale Res Lett ; 14(1): 349, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776713

RESUMO

Metal-semiconductor heterostructures integrate multiply functionalities beyond those of their individual counterparts. Great efforts have been devoted to synthesize heterostructures with controlled morphologies for the applications ranging from photocatalysis to photonic nanodevices. Beyond the morphologies, the interface between two counterparts also significantly influences the performance of the heterostructures. Here, we synthesize Au/CdSe Janus nanostructures consisting of two half spheres of Au and CdSe separated by a flat and high-quality interface. Au/CdSe with other morphologies could also be prepared by adjusting the overgrowth conditions. The photocatalytic hydrogen generation of the Au/CdSe Janus nanospheres is measured to be 3.9 times higher than that of the controlled samples with CdSe half-shells overgrown on the Au nanospheres. The highly efficient charge transfer across the interface between Au and CdSe contributes to the improved photocatalytic performance. Our studies may find the applications in the design of heterostructures with highly efficient photocatalytic activity.

3.
Nanoscale ; 11(17): 8538-8545, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30990484

RESUMO

We synthesize Au@WS2 hybrid nanobelts and investigate their third-order nonlinear responses mediated by a strong anti-Stokes effect. By using the femtosecond Z-scan technique and tuning the excitation photon energy (Eexc), we find the sign reversals of both nonlinear absorption coefficient ß and nonlinear refractive index γ to be around 1.60 eV, which is prominently higher than the bandgap (1.35 eV) of WS2 bulk owing to the strong anti-Stokes processes around the bandgap of the indirect semiconductors. The saturable absorption and self-defocusing of the WS2 nanobelts are significantly enhanced by the plasmon resonance of the Au nanoparticles when Eexc > 1.60 eV. But the excited state absorption assisted by the anti-Stokes processes and the self-focusing observed at Eexc < 1.60 eV are suppressed by the surface plasmon. Furthermore, by using population rate equations, we theoretically analyze the sign reversals of both ß and γ and reveal the physical mechanism of the unique nonlinear responses of the hybrids with the plasmon resonance and anti-Stokes effect. These observations enrich the understanding of the nonlinear processes and interactions between the plasmon and exciton and are helpful for developing nonlinear optical nanodevices.

4.
Nanotechnology ; 30(26): 265202, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30856615

RESUMO

We theoretically demonstrate that pure magnetic quadrupole (MQ) scattering is achieved via the excitation of anapole modes and Fano resonance in noble metal (Au or Ag) and high refractive index dielectric (AlGaAs) hybrid nano-antennas. In Au-AlGaAs hybrid nano-antennas, electric anapole and magnetic anapole modes are observed, leading to the suppressions of electric and magnetic dipoles. Introducing gain material to AlGaAs nanodisk to increase the strength of electric quadrupole (EQ) Fano resonance leads to the suppression of EQ scattering. Then, ideal MQ scattering is achieved at the wavelength of total scattering cross-section dip. The increase of signal-to-noise ratio of MQ results in the great enhancement of near-field inside AlGaAs nanodisk. Additionally, the strong MQ resonance exhibits great capability for boosting second-harmonic generation by proper mode matching. These findings achieved in subwavelength geometries have important implications for functional metamaterials and nonlinear photonic nanodevices.

5.
Nanoscale ; 10(41): 19586-19594, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324954

RESUMO

In this study, we synthesized CdS/(Au-ReS2) nanospheres that have highly efficient photocatalytic hydrogen production activity induced by dielectric-plasmon hybrid antenna resonance. As the diameter (D) of ReS2 nanospheres consisting of 2D nanosheets increases from 114 ± 11 to 218 ± 25 nm, the resonance wavelength of the ReS2 dielectric antenna is tuned from 380 to 620 nm and the hydrogen production rate for the CdS/(Au-ReS2) nanospheres increases by more than 1.85 times and reaches a value as high as 3060 µmol g-1 h-1, with a 9% weight percentage of Au. Due to the enhancements of the local electromagnetic field and excitation energy transfer by the ReS2-Au dielectric-plasmon hybrid antenna, the hydrogen production rate for the CdS/(Au-ReS2) nanospheres (D = 218 ± 25 nm) is 797, 319, 105 and 12 times larger than that for pure ReS2, Au-ReS2, CdS, and CdS-ReS2, respectively. Additionally, the persistence and reusability measurements indicate a favorable stability of CdS/(Au-ReS2). These results provide a strategy to prepare a new class of dielectric-plasmon hybrid antennas consisting of 2D materials and metal nanoparticles, which have promise in applications ranging from photocatalysis to nonlinear optics.

6.
Sci Rep ; 7(1): 9776, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852097

RESUMO

We theoretically study the gain-assisted double plasmonic resonances to enhance second harmonic generation (SHG) in a centrosymmetric multilayered silver-dielectric-gold-dielectric (SDGD) nanostructure. Introducing gain media into the dielectric layers can not only compensate the dissipation and lead to giant amplification of surface plasmons (SPs), but also excite local quadrupolar plasmon which can boost SHG by mode matching. Specifically, as the quadrupolar mode dominates SHG in our nanostructure, under the mode matching condition, the intensity of second harmonic near-field can be enhanced by 4.43 × 102 and 1.21 × 105 times when the super-resonance is matched only at the second harmonic (SH) frequency or fundamental frequency, respectively. Moreover, the intensity of SHG near-field is enhanced by as high as 6.55 × 107 times when the nanostructure is tuned to double super-resonances at both fundamental and SH frequencies. The findings in this work have potential applications in the design of nanosensors and nanolasers.

7.
Nanoscale ; 9(18): 6068-6075, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28443939

RESUMO

The "artificial magnetic" resonance in plasmonic metamolecules extends the potential application of magnetic resonance from terahertz to optical frequency bypassing the problem of magnetic response saturation by replacing the conduction current with the ring displacement current. So far, the magnetic Fano resonance-induced nonlinearity enhancement in plasmonic metamolecule rings has not been reported. Here, we use the magnetic Fano resonance to enhance second-harmonic generation (SHG) in plasmonic metamolecule rings. In the spectra of the plasmonic metamolecule, an obvious Fano dip appears in the scattering cross section, while the dip does not appear in the absorption cross section. It indicates that at the Fano dip the radiative losses are suppressed, while the optical absorption efficiency is at a high level. The largely enhanced SHG signal is observed as the excitation wavelength is adjusted at the magnetic Fano dip of the plasmonic metamolecule rings with stable and tunable magnetic responses. We also compare the magnetic Fano dip with the electric case to show its advantages in enhancing the fundamental and second harmonic responses. Our research provides a new thought for enhancing optical nonlinear processes by magnetic modes.

8.
Sci Rep ; 7: 43282, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266619

RESUMO

Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer.

9.
Sci Rep ; 7: 44806, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322264

RESUMO

We report a plasmon-assisted growth of metal and semiconductor onto the tips of Ag nanotriangles (AgNTs) under light irradiation. The site-selective growth of Ag onto AgNTs are firstly demonstrated on the copper grids and amine-coated glass slides. As the irradiation time increases, microscopic images indicate that AgNTs gradually touch with each other and finally "weld" tip-to-tip together into the branched chains. Meanwhile, the redshift of plasmon band is observed in the extinction spectra, which agrees well the growth at the tips of AgNTs and the decrease of the gaps between the adjacent nanotriangles. We also synthesize AgNT-Cu2O nanocomposites by using a photochemical method and find that the Cu2O nanoparticles preferably grow on the tips of AgNTs. The site-selective growth of Ag and Cu2O is interpreted by the local field concentration at the tips of AgNTs induced by surface plasmon resonance under light excitation.

10.
Nanotechnology ; 27(46): 465703, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27749280

RESUMO

The transport properties of a single plasmon interacting with a hybrid system composed of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP) coupled to a one-dimensional surface plasmonic waveguide are investigated theoretically via the real-space approach. We considered that the MNP-SQD interaction leads to the formation of a hybrid exciton and the transmission and reflection of a single incident plasmon could be controlled by adjusting the frequency of the classical control field applied to the MNP-SQD hybrid nanosystem, the kinds of MNPs and the background media. The transport properties of a single plasmon interacting with such a hybrid nanosystem discussed here could find applications in the design of next-generation quantum devices, such as single-photon switching and nanomirrors, and in quantum information processing.

11.
Sci Rep ; 6: 18660, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26733338

RESUMO

We present that surface plasmon polariton, side-coupled to a gain-assisted nanoresonator where the absorption is overcompensated, exhibits a prominent phase shift up to π maintaining the flat unity transmission across the whole broad spectra. Bandwidth of this plasmonic phase shift can be controlled by adjusting the distance between the plasmonic waveguide and the nanoresonator. For a moderate distance, within bandwidth of 100 GHz, the phase shift and transmission are constantly maintained. The plasmonic phase can be shift-keying-modulated by a pumping signal in the gain-assisted nanoresonator. A needed length in our approach is of nanoscale while already suggested types of plasmonic phase modulator are of micrometer scale in length. The energy consumption per bit, which benefits from the nano size of this device, is ideally low on the order of 10 fJ/bit. The controllable plasmonic phase shift can find applications in nanoscale Mach-Zehnder interferometers and other phase-sensitive devices as well as directly in plasmonic phase shift keying modulators.

12.
Nanoscale ; 7(38): 15798-805, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26355380

RESUMO

We investigate tunable plasmon resonance and enhanced second harmonic generation (SHG) and up-converted fluorescence (UCF) of the hemispheric-like silver core/shell islands. The Ag, Ag/Ag2O, and Ag/Ag2O/Ag island films are prepared by using a sputtering technique. The SHG and UCF of the Ag/Ag2O/Ag core/shell islands near the percolating regime is enhanced 2.34 and 3.94 times compared to the sum of two individual counterparts of Ag/Ag2O core/shell and Ag shell islands. The ratio of SHG intensity induced by p- and s-polarization is 0.86 for the initial Ag islands and increase to 1.61 for the Ag/Ag2O/Ag core/shell samples. The tunable intensity ratio of SHG to UCF of the Ag islands treated by thermal and laser annealing processes is also observed. The physical mechanism of the enhanced SHG and UCF in the Ag/Ag2O/Ag core/shell islands is discussed. Our observations provide a new approach to fabricate plasmon-enhanced optical nonlinear nanodevices with tunable SHG and UCF.

13.
Nanoscale ; 7(18): 8503-9, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25896476

RESUMO

Strong coupling of plasmons and molecules generates intriguingly hybridized resonance. The IR-806 molecule is a near-infrared cyanine liquid crystal dye with multiple molecular bands and its tunable absorption spectrum varies dramatically with concentration. In this article, we investigate multiple hybridized resonances of the Au nanorods (AuNRs) strongly coupled to IR-806 molecules. Five hybridized resonance peaks are observed in the extinction spectra of the AuNR@IR-806 hybrids. Two resonance peaks at approximately 840 and 912 nm in the hybrids are reported for the first time. The dependence of the multiple hybridized peaks on the bare plasmon resonance wavelength of AuNRs and the molecular concentration is also demonstrated. The observations presented herein provide a plasmon-molecule coupling route for tuning optical responses of liquid crystal molecules.

14.
Sci Rep ; 5: 9735, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25875139

RESUMO

A saturable absorber is a nonlinear functional material widely used in laser and photonic nanodevices. Metallic nanostructures have prominent saturable absorption (SA) at the plasmon resonance frequency owing to largely enhanced ground state absorption. However, the SA of plasmonic metal nanostructures is hampered by excited-state absorption processes at very high excitation power, which usually leads to a changeover from SA to reversed SA (SA→RSA). Here, we demonstrate tunable nonlinear absorption behaviours of a nanocomplex of plasmonic and molecular-like Au nanocrystals. The SA→RSA process is efficiently suppressed, and the stepwise SA→SA process is fulfilled owing to energy transfer in the nanocomplex. Our observations offer a strategy for preparation of the saturable absorber complex and have prospective applications in liquid lasers as well as one-photon nonlinear nanodevices.

15.
Nanoscale ; 7(4): 1463-70, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25503522

RESUMO

Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ∼1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.

16.
Nanoscale ; 7(5): 1970-6, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25536020

RESUMO

Doping with intentional impurities is an intriguing way to tune the properties of semiconductor nanocrystals. However, the synthesis of some specific doped semiconductor nanocrystals remains a challenge and the doping mechanism in this strongly confined system is still not clearly understood. In this work, we report, for the first time, the synthesis of stable and water-soluble Ag-doped CdTe semiconductor quantum dots (SQDs) via a facile aqueous approach. Experimental characterization demonstrated the efficient doping of the Ag impurities into the CdTe SQDs with an appropriate reaction time. By doping 0.3% Ag impurities, the Stokes shift is decreased by 120 meV, the fluorescence intensity is enhanced more than 3 times, the radiative rate is enhanced 4.2 times, and the non-radiative rate is efficiently suppressed. These observations reveal that the fluorescence enhancement in Ag-doped CdTe SQDs is mainly attributed to the minimization of surface defects, filling of the trap states, and the enhancement of the radiative rate by the silver dopants. Our results suggest that the silver doping is an efficient method for tuning the optical properties of the CdTe SQDs.

17.
Nanoscale ; 6(10): 4985-97, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24733287

RESUMO

Plasmonic Fano resonances (FRs) in nanostructures have been extensively studied in recent years. Nanorod-based complexes for FRs have also attracted much attention. The basic optical properties and fabrication technology of different kinds of plasmonic nanorods have been greatly developed over the last several years. The mutipole plasmon resonances and their flexible adjustment ranges on nanorods make them promising for FR modifications and structure diversity. In this paper, we review some recently studied plasmonic nanorod based nanostructures for FRs, including single nanorods, dimers, mutipole rods and nanorod-nanoparticle hybrids. The corresponding applications of the FRs are also briefly discussed.

18.
Sci Rep ; 3: 1861, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23689426

RESUMO

There exists a wealth of means of efficient utilization of solar energy in nature, with photosynthesis of chlorophylls as a prime example. Separately, artificially structured plasmonic materials are versatile in light harvesting and energy conversion. Using a simple and scalable design of near-percolating silver nanostructures, we demonstrate that the light-harvesting efficiency of chlorophylls can be drastically enhanced by tuning the plasmon frequency of the constituent silver nanoparticles to coincide with the maximal photon flux of sunlight. In particular, we show that the photon upconversion efficiency can be readily enhanced by over 20 folds, with the room-temperature fluorescence quantum yield increased by a factor of 2.63. The underlying mechanism for the upconversion enhancement is attributed to a one-electron-per-photon anti-Stokes process, involving absorption of a characteristic phonon mode of the chlorophylls. These findings suggest that chlorophylls can serve as molecular building blocks for high-efficiency light harvesting and solar energy conversion.


Assuntos
Clorofila/química , Luz , Nanopartículas Metálicas/química , Nanoestruturas/química , Fótons , Prata/química , Energia Solar , Ressonância de Plasmônio de Superfície , Fluorescência , Fotossíntese
19.
Nanoscale ; 5(12): 5368-74, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23649164

RESUMO

We report the synthesis of 43-nm diameter Au nanocube dimers by using Ag(+) ions as competitive ligands to freeze L-cysteine-induced assembly process of the nanocubes to a desirable stage. Ascribed to the resonant interparticle coupling with an newly arising plasmon band at 710 nm and local field enhancement, the two-photon luminescence intensity of the Au nanocube dimers in solution was over 20 times stronger than that of the monomers in the wavelength range 555-620 nm. Furthermore, by coupling Raman tags onto the nanocube surface, a solution-based surface-enhanced Raman scattering (SERS) of the nanocube dimers had an enhancement factor of over 10 times compared to the isolated nanocubes. To sum up, with high stability in solution and attractive optical properties, the Au nanocube dimers have potential applications in in vivo bio-imaging and solution-based SERS.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Cisteína/química , Dimerização , Raios Infravermelhos , Tamanho da Partícula , Fótons , Análise Espectral Raman , Água/química
20.
Opt Express ; 21(3): 3253-8, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481784

RESUMO

The CdS/SiO(2) core/shell nanowires (NWs) with controlled shell thickness were successfully synthesized and subsequently heat-treated at 500 °C. The influences of silica shell coating and annealing processes on their optical properties have been investigated. Compared with original CdS NWs, the annealed CdS/SiO(2) NWs exhibited an enhanced band-edge emission with slowed photoluminescence lifetime, while the intensity of defect emission decreased. The results were ascribed to the surface passivation and recrystallization by shell coating and annealing. We believe our finding would help improving the optical properties of semiconductor NWs, and facilitate its applications in various realms, such as nanoscale emitter, sensor, and photoelectric device.


Assuntos
Compostos de Cádmio/química , Medições Luminescentes/instrumentação , Nanotubos/química , Nanotubos/ultraestrutura , Compostos de Selênio/química , Dióxido de Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento , Dureza , Temperatura Alta , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA