Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475444

RESUMO

The fall armyworm, Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), a common agricultural pest known for its extensive migration and wide host ranges, causes considerable harm to maize (Zea mays L.). In this study, we utilized two molecular marker genes, COI and Tpi, to compare the genetic characteristics of the collected original samples. Additionally, through an interactive study between S. frugiperda larvae and six maize varieties aiming to understand the insect's adaptability and resistance mechanisms, our analysis revealed that both the COI and Tpi genes identified S. frugiperda as the corn strain. Further examination of the larvae showed significant differences in nutritional indices, digestive, and detoxification enzyme activities. Special maize varieties were found to offer higher efficiency in nutrient conversion and assimilation compared with common varieties. This study revealed adaptations in S. frugiperda's digestive and detoxification processes in response to the different maize varieties. For instance, larvae reared on common maize exhibited elevated amylase and lipase activities. Interestingly, detoxification enzyme activities exhibited different patterns of variation in different maize varieties. The Pearson correlation analysis between nutritional indices, enzyme activities, and the nutritional content and secondary metabolites of maize leaves provided deeper insights into the pest's adaptability. The results highlighted significant relationships between specific nutritional components in maize and the physiological responses of S. frugiperda. Overall, our findings contribute substantially to the understanding of S. frugiperda's host plant adaptability, offering critical insights for the development of sustainable pest management strategies.

2.
Insects ; 15(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276822

RESUMO

Tetranychus urticae is a highly polyphagous and global pest. Spider mites primarily feed on the underside of leaves, resulting in decreased photosynthesis, nutritional loss, and the development of chlorotic patches. We investigated the life tables of the two-spotted spider mite T. urticae on fungal endophyte Beauveria bassiana colonized and untreated plants of the common Phaseolus vulgaris L., a bean plant. Based on the age-stage, two-sex life table theory, data were evaluated. The mites raised on untreated plants had protonymphs, deutonymphs, and total pre-adult stage durations that were considerably shorter (1.76, 2.14, and 9.77 d, respectively) than the mites raised on plants that had been colonized (2.02, 2.45, and 10.49 d, respectively). The fecundity (F) varied from 28.01 eggs per female of colonized plants to 57.67 eggs per female of endophyte-untreated plants. The net reproductive rate (R0) in the plants with and without endophytes was 19.26 and 42.53 brood, respectively. The untreated plants had an intrinsic rate of increase (rm) of 0.245 days as opposed to the colonized plants, which had an r of 0.196 days and a finite rate of increase (λ) (1.27 and 1.21, respectively). Population forecasts based on a two-sex, age-stage life table demonstrated the dynamism and variability of the stage structure. Furthermore, the colonization of B. bassiana had a negative impact on the growth and development of T. urticae. It lowered the adult mite life span, female fecundity, net reproduction rate, and intrinsic growth rate. We propose that future research should better use entomopathogenic fungal endophytes to understand host plant resistance strategies in integrated pest management.

3.
Front Plant Sci ; 14: 1288997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126022

RESUMO

Introduction: The pea aphid, Acyrthosiphon pisum, is a typical sap-feeding insect and an important worldwide pest. There is a primary symbiont-Buchnera aphidicola, which can synthesize and provide some essential nutrients for its host. At the same time, the hosts also can actively adjust the density of bacterial symbiosis to cope with the changes in environmental and physiological factors. However, it is still unclear how symbionts mediate the interaction between herbivorous insects' nutrient metabolism and host plants. Methods: The current study has studied the effects of different host plants on the biological characteristics, Buchnera titer, and nutritional metabolism of pea aphids. This study investigated the influence of different host plants on biological characteristics, Buchnera titer, and nutritional metabolism of pea aphids. Results and discussion: The titer of Buchnera was significantly higher on T. Pretense and M. officinalis, and the relative expression levels were 1.966±0.104 and 1.621±0.167, respectively. The content of soluble sugar (53.46±1.97µg/mg), glycogen (1.12±0.07µg/mg) and total energy (1341.51±39.37µg/mg) of the pea aphid on V. faba were significantly higher and showed high fecundity (143.86±11.31) and weight (10.46±0.77µg/mg). The content of total lipids was higher on P. sativum and T. pretense, which were 2.82±0.03µg/mg and 2.92±0.07µg/mg, respectively. Correlation analysis found that the difference in Buchnera titer was positively correlated with the protein content in M. officinalis and the content of total energy in T. pratense (P < 0.05). This study confirmed that host plants not only affected the biological characteristics and nutritional metabolism of pea aphids but also regulated the symbiotic density, thus interfering with the nutritional function of Buchnera. The results can provide a theoretical basis for further studies on the influence of different host plants on the development of pea aphids and other insects.

4.
Funct Integr Genomics ; 23(3): 217, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392308

RESUMO

Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.


Assuntos
Fabaceae , Animais , Fabaceae/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Agricultura , Insetos/genética
6.
Microorganisms ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37110309

RESUMO

Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers' major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to their potential antifungal activity. The present study investigated the potential of green synthesized silver nanoparticles (AgNPs) for enhancing the growth and yield of tomato plants and their resistance against early blight disease. AgNPs were synthesized using leaf extract of the neem tree. Tomato plants treated with AgNPs showed a significant increase in plant height (30%), number of leaves, fresh weight (45%), and dry weight (40%) compared to the control plants. Moreover, the AgNP-treated plants exhibited a significant reduction in disease severity index (DSI) (73%) and disease incidence (DI) (69%) compared to the control plants. Tomato plants treated with 5 and 10 ppm AgNPs reached their maximum levels of photosynthetic pigments and increased the accumulation of certain secondary metabolites compared to the control group. AgNP treatment improved stress tolerance in tomato plants as indicated by higher activities of antioxidant enzymes such as PO (60%), PPO (65%), PAL (65.5%), SOD (65.3%), CAT (53.8%), and APX (73%). These results suggest that using green synthesized AgNPs is a promising approach for enhancing the growth and yield of tomato plants and protecting them against early blight disease. Overall, the findings demonstrate the potential of nanotechnology-based solutions for sustainable agriculture and food security.

7.
J Econ Entomol ; 116(2): 405-415, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881678

RESUMO

Tetranychus truncatus Ehara (Acari: Tetranychidae) has become one of the major phytophagous pests in China in recent years, and is found on a wide range of host plants. However, little information is available on the population performance of this arthropod pest on potatoes. In this study, we explored the population growth of T. truncatus on two drought-tolerant potato (Solanum tuberosum L.) cultivars under laboratory conditions using the age-stage, two-sex life table. Tetranychus truncatus completed its entire life history on both potato cultivars tested, Holland 15 and Longshu 10. There was no significant difference between two potato cultivars in developmental duration. Tetranychus truncatus had shorter adult longevity (20.61 days), adult female longevity (20.41 days), and total female longevity (33.66 days) on Longshu 10 than Holland 15 (21.16 days, 21.19 days, and 34.38 days, respectively). However, it exhibited a higher preadult survival rate, higher fecundity (F = 88.32 eggs per female), and relatively higher population parameters when reared on Longshu 10 than on Holland 15 (F = 75.70 eggs per female). Growth projection also showed that the population size of T. truncatus on Longshu 10 (expand 750-fold) was larger than that on Holland 15 (expand 273-fold) after 60 days. Our results demonstrate that the drought-sensitive potato variety, Holland 15, is relatively resistant to T. truncatus compared with the drought-tolerant variety, Longshu 10, and suggest that T. truncatus exhibited a trade-off between longevity and reproduction on both potato cultivars. Our findings provide information on population prediction, which may aid the management of this pest mite species of potatoes.


Assuntos
Solanum tuberosum , Tetranychidae , Animais , Crescimento Demográfico , Secas , Reprodução
8.
Front Plant Sci ; 13: 961680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388543

RESUMO

The present study investigated the brassinosteroid-induced drought resistance of contrasting drought-responsive maize genotypes at physiological and transcriptomic levels. The brassinosteroid (BR) contents along with different morphology characteristics, viz., plant height (PH), shoot dry weight (SDW), root dry weight (RDW), number of leaves (NL), the specific mass of the fourth leaf, and antioxidant activities, were investigated in two maize lines that differed in their degree of drought tolerance. In response to either control, drought, or brassinosteroid treatments, the KEGG enrichment analysis showed that plant hormonal signal transduction and starch and sucrose metabolism were augmented in both lines. In contrast, the phenylpropanoid biosynthesis was augmented in lines H21L0R1 and 478. Our results demonstrate drought-responsive molecular mechanisms and provide valuable information regarding candidate gene resources for drought improvement in maize crop. The differences observed for BR content among the maize lines were correlated with their degree of drought tolerance, as the highly tolerant genotype showed higher BR content under drought stress.

9.
Insects ; 13(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36292828

RESUMO

Fall armyworm [Spodoptera frugiperda (J. E. Smith, 1797)] was first reported in the Americas, then spread to all the continents of the world. Chemical insecticides are frequently employed in managing fall armyworms. These insecticides have various modes of actions and target sites to kill the insects. Chlorantraniliprole is a selective insecticide with a novel mode of action and is used against Lepidopteran, Coleopteran, Isopteran, and Dipteran pests. This study determined chlorantraniliprole's lethal, sub-lethal, and trans-generational effects on two consecutive generations (F0, F1, and F2) of the fall armyworm. Bioassays revealed that chlorantraniliprole exhibited higher toxicity against fall armyworms with a LC50 of 2.781 mg/L after 48 h of exposure. Significant differences were noted in the biological parameters of fall armyworms in all generations. Sub-lethal concentrations of chlorantraniliprole showed prolonged larval and adult durations. The parameters related to the fitness cost in F0 and F1 generations showed non-significant differences. In contrast, the F2 generation showed lower fecundity at lethal (71 eggs/female) and sub-lethal (94 eggs/female) doses of chlorantraniliprole compared to the control (127.5-129.3 eggs/female). Age-stage specific survival rate (Sxj), life expectancy (Exj) and reproductive rate (Vxj) significantly differed among insecticide-treated groups in all generations compared to the control. A comparison of treated and untreated insects over generations indicated substantial differences in demographic parameters such as net reproduction rate (R0), intrinsic rate of increase (r), and mean generation time (T). Several biological and demographic parameters were shown to be negatively impacted by chlorantraniliprole. We conclude that chlorantraniliprole may be utilized to manage fall armyworms with lesser risks.

10.
Insects ; 13(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35735845

RESUMO

Resistant variety screening is widely recommended for the management of Sitobion avenae. The purpose of this study was to assess responses of six wheat varieties (lines) to S. avenae. The aphid quantity ratio (AQR) was used to assess S. avenae resistance. Pearson's correlation coefficient was used to perform a correlation analysis between AQR, biological parameters, and the accumulation of total phenolic and flavonoid content. When compared to the other cultivars, the results showed that two cultivars, Yongliang No.15 and Ganchun No.18, had high resistance against S. avenae. The correlation analysis revealed a positive relationship between total phenol and flavonoid content accumulation and developmental duration (DD), and a negative relationship between accumulation and weight gain (WG) and mean relative growth rate (MRGR). The correlation between flavonoid and biological parameters was statistically stronger than the correlation between total phenol and biological parameters. This research provides critical cues for screening and improving aphid-resistant wheat varieties in the field and will aid in our understanding of the resistance mechanism of wheat varieties against S. avenae.

11.
PLoS One ; 17(5): e0267987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35605009

RESUMO

Cowpea (Vigna unguiculata) is an important legume which is consumed globally for protein intake, particularly in Asian states. It is a well-known source of dietary fiber, protein, minerals, and vitamins. The cowpea grains are stored after harvest and used till the next harvest. However, the grains are infested by storage pests, primarily Callosobruchus maculatus. Hence, effective management strategies are needed to protect the stored grains form the pests. This study assessed the efficacy of some edible oils in suppressing C. maculatus infestation in stored cowpea grains. Four different botanical oils (i.e., mustard, neem, poppy, and pumpkin) at four different concentrations (i.e., 0.5, 1.0, 1.5 and 2.0 ml per 100 g grain) were included in the study. A control treatment without any botanical oil was also included for comparison. The relevant concentrations of botanical oils were poured into plastic containers containing 100 g cowpea grains and ten C. maculatus adults were released. The jars were sealed and placed at room temperature. Data relating to mortality, oviposition, F1 adult emergence, and seed weight loss were recorded. The tested botanical oils and their concentrations significantly affected mortality after one day. Mortality after 2nd and 3rd days remained unaffected by botanical oils and their different concentrations. The highest mortality was recorded in neem oil-treated grains followed by poppy, pumpkin, and mustard oils. Increased oviposition rate was observed in the grains treated with mustard and pumpkin oils, while those treated with neem and poppy oil recorded decreased oviposition. The control treatment had increased oviposition rate compared to tested botanical oils. All botanical oils significantly inhibited egg laying percentage. The highest germination was recorded for the grains treated with mustard oil followed by pumpkin, poppy, and neem oils, respectively. The lowest germination was recorded for control treatment. Significant differences were noted for C. maculatus repellency among botanical oils. No emergence of adults (F1 progeny) was recorded in all tested botanical oils; thus, F1 progeny was inhibited by 100%. Weight loss, damage percentage, and holes in the grains were not recorded since F1 progeny did not emerge. It is concluded that tested botanical oils are promising and could be utilized to control C. maculatus in cowpea grains during storage.


Assuntos
Besouros , Repelentes de Insetos , Inseticidas , Vigna , Animais , Feminino , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Óleos , Redução de Peso
12.
Life (Basel) ; 12(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35455012

RESUMO

Spodoptera frugiperda (fall armyworm) is a member of the superfamily Noctuoidea that accounts for more than a third of all Lepidoptera and includes a considerable number of agricultural and forest pest species. Spodoptera frugiperda is a polyphagous species that is a significant agricultural pest worldwide, emphasizing its economic importance. Spodoptera frugiperda's genome size, assembly, phylogenetic classification, and transcriptome analysis have all been previously described. However, the different studies reported different compositions of repeated DNA sequences that occupied the whole assembled genome, and the Spodoptera frugiperda genome also lacks the comprehensive study of dynamic satellite DNA. We conducted a comparative analysis of repetitive DNA across geographically distant populations of Spodoptera frugiperda, particularly satellite DNA, using publicly accessible raw genome data from eight different geographical regions. Our results showed that most transposable elements (TEs) were commonly shared across all geographically distant samples, except for the Maverick and PIF/Harbinger elements, which have divergent repeat copies. The TEs age analysis revealed that most TEs families consist of young copies 1-15 million years old; however, PIF/Harbinger has some older/degenerated copies of 30-35 million years old. A total of seven satellite DNA families were discovered, accounting for approximately 0.65% of the entire genome of the Spodoptera frugiperda fall armyworm. The repeat profiling analysis of satellite DNA families revealed differential read depth coverage or copy numbers. The satellite DNA families range in size from the lowest 108 bp SfrSat06-108 families to the largest (1824 bp) SfrSat07-1824 family. We did not observe a statistically significant correlation between monomer length and K2P divergence, copy number, or abundance of each satellite family. Our findings suggest that the satellite DNA families identified in Spodoptera frugiperda account for a considerable proportion of the genome's repetitive fraction. The satellite DNA families' repeat profiling revealed a point mutation along the reference sequences. Limited TEs differentiation exists among geographically distant populations of Spodoptera frugiperda.

13.
Leadersh Health Serv (Bradf Engl) ; ahead-of-print(ahead-of-print)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363454

RESUMO

PURPOSE: Covid-19 cases are rising at a high rate in Thailand. Thailand's administration has formulated many initiatives to combat the spread of coronavirus. However, during a pandemic, health-care workers have a diverse range of tasks that make it more challenging to continue working in hospitals. Consequently, the authors modeled the turnover intentions of health-care personnel to capture relevant psychological aspects of employees during the pandemic. Specifically, this study aims to focused on the moderating role of Covid-19 burnout (CBO) in the relationship between transformational leadership (TL) and job turnover intentions (JTI) with job satisfaction (JS) and knowledge hiding (KH) as mediators. DESIGN/METHODOLOGY/APPROACH: This research collected data using self-administered questionnaire. A two-stage partial least square-structural equation modeling (PLS-SEM) is carried out as an analysis technique to measure the linear relationship among constructs. The study tests hypotheses (direct and indirect effects) using 310 sample size of health-care personnel. FINDINGS: The findings indicated that CBO intensified the JTI of health-care personnel and strengthened the association of JS and KH with JTI during the Covid-19 pandemic. TL had a negative indirect effect on JTI. In addition, JS had a negative impact on JTI. ORIGINALITY/VALUE: The study highlights the importance of TL and JS as ways to reduce or alleviate JTI in health-care personnel during the Covid-19 pandemic in Thailand. Furthermore, CBO and KH can enhance JTI in health-care personnel.


Assuntos
Esgotamento Profissional , COVID-19 , Esgotamento Profissional/epidemiologia , Esgotamento Profissional/prevenção & controle , COVID-19/epidemiologia , Humanos , Intenção , Pandemias , Inquéritos e Questionários , Tailândia/epidemiologia
14.
PLoS One ; 17(3): e0265111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35353819

RESUMO

Poor postharvest handling, microbial infestation, and high respiration rate are some the factors are responsible for poor storage life of perishable commodities. Therefore, effective preservation of these commodities is needed to lower the damages and extend shelf life. Preservation is regarded as the action taken to maintain desired properties of a perishable commodity as long as possible. Persimmon (Diospyros kaki) is perishable fruit with high nutritive value; however, has very short shelf-life. Therefore, effective preservation and drying is needed to extend its storage life. Drying temperature and preservatives significantly influence the quality of perishable vegetables and fruits during drying. The current study investigated the effect of different temperatures and preservatives on drying kinetics and organoleptic quality attributes of persimmon. Persimmon fruits were treated with preservatives (25% honey, 25% aloe vera, 2% sodium benzoate, 1% potassium metabisulfite, and 2% citric acid solutions) under different drying temperatures (40, 45, and 50°C). All observed parameters were significantly affected by individual effects of temperatures and preservatives, except ash contents. Similarly, interactive effects were significant for all parameters except total soluble sugars, ash contents, and vitamin C. Generally, fruits treated with citric acid and dried under 50°C had 8.2% moisture loss hour-1, 14.9 drying hours, 0.030 g H2O g-1 hr-1, 1.23° Brix of total soluble solids, 6.71 pH, 1.35% acidity, and 6.3 mg vitamin C. These values were better than the rest of the preservatives and drying temperatures used in the study. Therefore, treating fruits with citric acid and drying at 50°C was found a promising technique to extend storage life of persimmon fruits. It is recommended that persimmon fruits dried at 50°C and preserved in citric acid can be used for longer storage period.


Assuntos
Diospyros , Ácido Ascórbico/análise , Ácido Cítrico/análise , Diospyros/química , Frutas/química , Cinética , Temperatura , Vitaminas/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-34794105

RESUMO

Temperature is a key parameter that affects insect population, abundance, and distribution in tropical and subtropical regions. Tamarixia radiata Waterson (Hymenoptera: Eulophidae) is a species-specific ectoparasitoid widely used as a biological control agent for the major citrus pest Diphornia citri Kuwayama (Hemiptera: Liviidea). To date, T. radiata response to high temperature at the molecular level still is unclear. In this study, we conducted a comparative analysis of the transcriptomes of T. radiata exposed at 25 °C and 38 °C for 15 min. A total of 51,072 unigenes were obtained, 22,413 annotated with a mean length of 1054 bp. Differential expression analysis showed that 502 genes were identified, including 476 genes significantly up-regulated and 26 genes down-regulated after heat stress exposure. The Gene Ontology analysis showed that most enriched DEGs are categorized into "cellular process", "metabolic process" and "DNA binding." In addition, "Lysosome," "Longevity regulating pathway-multiple species," and "starch and sucrose metabolism" were highly enriched in Kyoto Encyclopedia of Genes and Genomes pathways. Transcriptome analyses showed that heat stress significantly induced the transcription of the molecular chaperone, immune response, stress signaling transduction, and oxidation resistance, including highly expressed heat shock proteins, ATPases, and detoxifying enzymes. Furthermore, the expression patterns of thirteen genes including heat shock proteins (HSP), glutathione S-transferase (GST) and cytochrome P450 were consistent with the transcriptome results obtained through qRT-PCR. Together, our results provided a comprehensive study of the molecular response of T. radiata to heat stress and provides new insight for the future functional validation of heat resistance-related genes.


Assuntos
Hemípteros , Vespas , Animais , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Hemípteros/genética , Transcriptoma , Vespas/genética
16.
Front Plant Sci ; 13: 1079283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714745

RESUMO

Abiotic stress, particularly drought, will remain an alarming challenge for sustainable agriculture. New approaches have been opted, such as nanoparticles (NPs), to reduce the negative impact of drought stress and lessen the use of synthetic fertilizers and pesticides that are an inevitable problem these days. The application of zinc oxide nanoparticles (ZnO NPs) has been recognized as an effective strategy to enhance plant growth and crop production during abiotic stress. The aim of the current study was to investigate the role of ZnO NPs in drought stress management of drought-susceptible Coriandrum sativum L. (C. sativum) in two consecutive seasons. Drought regimes (moderate drought regime-MDR and intensive drought regime-IDR) were developed based on replenishment method with respect to 50% field capacity of fully irrigated (control) plants. The results showed that foliar application of 100 ppm ZnO NPs improved the net photosynthesis (Pn), stomatal conductance (C), and transpiration rate (E) and boosted up the photosynthetic capacity associated with photosynthetic active radiation in MDR. Similarly, 48% to 30% improvement of chlorophyll b content was observed in MDR and onefold to 41% in IDR during both seasons in ZnO NP-supplemented plants. The amount of abscisic acid in leaves showed a decreasing trend in MDR and IDR in the first season (40% and 30%) and the second season (49% and 33%) compared with untreated ZnO NP plants. The ZnO NP-treated plants showed an increment in total soluble sugars, total phenolic content, and total flavonoid content in both drought regimes, whereas the abaxial surface showed high stomatal density and stomatal index than the adaxial surface in foliar-supplied NP plants. Furthermore, ZnO NPs improve the magnitude of stomata ultrastructures like stomatal length, stomatal width, and pore length for better adaptation against drought. Principal component analysis revealed the efficacy of ZnO NPs in inducing drought tolerance in moderate and intensive stress regimes. These results suggest that 100 ppm ZnO NPs can be used to ameliorate drought tolerance in C. sativum plants.

17.
Front Genet ; 13: 1089375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685917

RESUMO

Pea is a conventional grain-feed-grass crop in Tibet and the only high-protein legume in the region; therefore, it plays an important role in Tibetan food and grass security. Zinc finger-homeodomain (ZF-HD) belongs to a family of homozygous heterotypic cassette genes, which play an important role in plant growth, development, and response to adversity stress. Using a bioinformatics approach, 18 PsZF-HD family members were identified. These genes were distributed across seven chromosomes and two scaffold fragments, and evolutionary analysis classified them into two subgroups, MIF and ZHD. The MIF subgroup was subdivided into three subclasses (PsMIFⅠ-III), and the ZHD subgroup was subdivided into five subclasses (ZHDⅠ-V). The PsZF-HD members were named PsMIF1-PsMIF4 and PsZHD1-PsZHD14. Twelve conserved motifs and four conserved domains were identified from PsZF-HD family, of which MIF subgroup only contained one domain, while ZHD subgroup contained two types of domains. In addition, there were significant differences in the three-dimensional structures of the protein members of the two subgroups. Most PsZF-HD genes had no introns (13/18), and only five genes had one intron. Forty-five cis-acting elements were predicted and screened, involving four categories: light response, stress, hormone, and growth and development. Transcriptome analysis of different tissues during pea growth and development showed that PsZHD11, 8, 13, 14 and MIF4 were not expressed or were individually expressed in low amounts in the tissues, while the other 13 PsZF-HDs genes were differentially expressed and showed tissue preference, as seen in aboveground reproductive organs, where PsZHD6, 2, 10 and MIF1 (except immature seeds) were highly expressed. In the aerial vegetative organs, PsZHD6, 1, and 10 were significantly overexpressed, while in the underground root system, PsMIF3 was specifically overexpressed. The leaf transcriptome under a low-nitrogen environment showed that the expression levels of 17 PsZF-HDs members were upregulated in shoot organs. The leaf transcriptome analysis under a low-temperature environment showed stress-induced upregulation of PsZHD10 and one genes and down-regulation of PsZHD6 gene. These results laid the foundation for deeper exploration of the functions of the PsZF-HD genes and also improved the reference for molecular breeding for stress resistance in peas.

18.
PLoS One ; 16(12): e0260470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34852006

RESUMO

Helicoverpa armigera (Hub.) is a destructive pest of the tomato (Lycopersicon esculentum Mill) crop in Pakistan. Although insecticides are the primary management strategy used to control H. armigera, most of them are not effective due to considerable toxic residual effects on the fruits. Nonetheless, H. armigera is rapidly evolving resistance against the available pesticides for its management. This situation calls upon the need of alternative management options against the pest. Different plant extracts have been suggested as a viable, environment-friendly option for plant protection with minimal side effects. Furthermore, the plant extracts could also manage the insect species evolving resistance against pesticides. This study evaluated the efficacy of different plant extracts (i.e., Neem seed, turmeric, garlic and marsh pepper) against H. armigera. Furthermore, the impact of the plant extracts on growth and yield of tomato crop was also tested under field conditions. The results revealed that all plant extracts resulted in higher mortality of H. armigera compared to control. Similarly, the highest plant height was observed for the plants treated with the plant extracts compared to untreated plants. Moreover, the highest tomato yield was observed in plants treated with plant extracts, especially with neem seed (21.013 kg/plot) followed by pepper extract (19.25 kg/plot), and garlic extract 18.4 kg/plot) compared to the untreated plants (8.9 kg/plot). It is concluded that plant extracts can be used as eco-friendly approaches for improving tomato yield and resistance management of H. armigera.


Assuntos
Inseticidas/química , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Extratos Vegetais/química , Solanum lycopersicum/crescimento & desenvolvimento , Animais , Azadirachta/química , Capsicum/química , Alho/química , Inseticidas/farmacologia , Paquistão , Extratos Vegetais/farmacologia
19.
PLoS One ; 16(11): e0259749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752476

RESUMO

The fall armyworm (Spodoptera frugiperda) is a major economic pest in the United States and has recently become a significant concern in African and Asian countries. Due to its increased resistance to current management strategies, including pesticides and transgenic corn, alternative management techniques have become more necessary. Currently, silicon (Si) is being used in many pest control systems due to its ability to increase plant resistance to biotic and abiotic factors and promote plant growth. The current experiments were carried out at the College of Plant Protection, Gansu Agricultural University, Lanzhou, China, to test the effect of Si on lifetable parameters and lipase activity of fall armyworm and vegetative and physiological parameters of maize plants. Two sources of Si (silicon dioxide: SiO2 and potassium silicate: K2SiO3) were applied on maize plants with two application methods (foliar application and soil drenching). The experiment results revealed that foliar applications of SiO2 and K2SiO3 significantly (P≤0.05) increased mortality percentage and developmental period and decreased larval and pupal biomass of fall armyworm. Similarly, both Si sources significantly (P≤0.05) reduced lipase activity of larvae, and fecundity of adults, whereas prolonged longevity of adults. Among plant parameters, a significant increase in fresh and dry weight of shoot, stem length, chlorophyll content, and antioxidant activity was observed with foliar applications of Si. Root fresh and dry weight was significantly (P ≤ 0.05) higher in plants treated with soil drenching of SiO2 and K2SiO3. Moreover, SiO2 performed better for all parameters as compared to K2SiO3 and control treatment. The study conclusively demonstrated a significant negative effect on various biological parameters of fall armyworm when plants were treated with Si, so it can be a promising strategy to control this pest.


Assuntos
Spodoptera , Animais , Larva , Pupa , Dióxido de Silício , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA