Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Metab Pharmacokinet ; 29(2): 198-207, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24172718

RESUMO

Avoiding drug-drug interactions (DDIs) mediated through inhibition of cytochrome P450 (CYP) activity is highly desirable. Direct inhibition (DI) of CYP through new chemical entities (NCEs) or time-dependent inhibition (TDI) through reactive metabolites should be elucidated at an early stage of drug discovery research. In particular, TDI of CYP occurring through reactive metabolites may be irreversible and even sustained, causing far more serious DDIs for TDIs than for DIs. Furthermore, it is important to ascertain whether an NCE inhibits multiple CYP isoforms. Hence, using a cocktail-substrate approach that we previously established (in which the activity of 8 CYP isoforms is simultaneously evaluated in a single run), we evaluated the IC50 values of direct inhibitors and TDI parameters (kobs, shifted IC50, KI and kinact) of time-dependent inhibitors that affect multiple CYP isoforms. The IC50 values for 8 CYP isoforms obtained using the cocktail-substrate approach were nearly identical to values previously reported. The TDI parameters for CYP1A2, 2C9, 2C19, 2D6, and CYP3A4/5 obtained using the cocktail-substrate approach were also nearly identical to those obtained using a single-substrate approach. Thus, the cocktail-substrate approach is useful for evaluating DI and TDI in the early stages of drug discovery and development processes.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Fígado/enzimologia , Cromatografia Líquida , Interações Medicamentosas , Humanos , Isoenzimas , Cinética , Microssomos Hepáticos/enzimologia , Reprodutibilidade dos Testes , Especificidade por Substrato , Espectrometria de Massas em Tandem
2.
Drug Metab Pharmacokinet ; 27(5): 520-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22498647

RESUMO

A significant number of new chemical entities (NCEs) disappear due to cytochrome P450 (CYP)-mediated clinical drug-drug interactions in drug discovery. Therefore, a high throughput assay of CYP activities is necessary in order to evaluate the inhibitory or inducible potencies of CYP isoforms with NCEs in early drug discovery. Here, we developed and validated a high-throughput assay to simultaneously monitor the in vitro activities of 8 CYP isoforms. A cocktail of 9 probe substrates for the 8 major CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5) was incubated with human liver microsomes. Each substrate-derived metabolite was simultaneously analyzed by multiple reactions monitoring with a single ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) run using stable isotope-labeled internal standards. The ultra-fast UPLC gradient allowed each metabolite to be separated within 1 min, providing quantitative linearity of over 2 orders of magnitude. CYP inhibition by 8 well-known inhibitors was confirmed by comparing single substrates with the substrate cocktail. The inhibition curve profiles and IC50 values for all CYPs in the cocktail substrate were similar to those of single substrates. UPLC-MS/MS using a CYP substrate cocktail is a reliable and robust high-throughput method to accurately assess CYP inhibition potencies of newly developed drugs.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Cromatografia Líquida de Alta Pressão/métodos , Descoberta de Drogas/métodos , Humanos , Isoenzimas , Marcação por Isótopo/métodos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Padrões de Referência , Reprodutibilidade dos Testes , Especificidade por Substrato , Espectrometria de Massas em Tandem/métodos
3.
Rapid Commun Mass Spectrom ; 25(11): 1600-8, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21594935

RESUMO

In pharmacology and toxicology, localization of the distribution of a drug molecule in its target tissue provides very important in vivo biological information. Traditionally, this has been examined using autoradiography (ARG). However, there are significant limitations in this application. One is the synthesis and use of radiolabeled compounds, the other is that the image generated expresses an undifferentiated mixture of the parent drug and/or its metabolites. The objective of the study was to define the specific distribution of the parent drug in rat ocular tissue containing melanin (e.g. the retina) using non-labeled chloroquine by MALDI Imaging tandem mass spectrometry (MS/MS). After single oral administration (at 20 mg/kg) of chloroquine, sections (10 µm) of rat eye tissue were prepared at 24 h. The MS system used was a quadrupole time-of flight (Q-TOF) tandem mass spectrometer (MALDI Synapt™, Waters, Milford, MA, USA). Tissue sections were sprayed with CHCA (α-cyano-4-hydroxycinnamic acid, 5 mg/mL) in 80% acetonitrile (ACN) containing 5% formic acid (FA) using either a manual sprayer (airbrush) or an automated sprayer (TM-Sprayer™, HTX Technologies, Carrboro, NC, USA). Chloroquine was readily detected in the MS/MS mode by monitoring one of its major fragment ions (m/z 247.10) and imaged through the rat eye tissue. The image of the specific distribution within the retina in the rat eye tissue was confirmed, and found to be similar to autoradiograms after oral administration of (14)C-chloroquine reported previously.


Assuntos
Cloroquina/análise , Cloroquina/farmacocinética , Olho/química , Olho/metabolismo , Melaninas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Cloroquina/administração & dosagem , Histocitoquímica , Masculino , Melaninas/química , Imagem Molecular/métodos , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA