Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543294

RESUMO

Lipid-bilayer-based liposomes are gaining attention in scientific research for their versatile role in drug delivery. With their amphiphilic design, liposomes efficiently encapsulate and deliver drugs to targeted sites, offering controlled release. These artificial structures hold great promise in advancing cancer therapy methodologies. Bibliometric research analyzes systematic literary data statistically. This study used bibliometric indicators to examine, map, and evaluate the applications of liposomes in cancer therapy. A Scopus search was conducted to identify all English-language peer-reviewed scientific publications on the applications of liposomes in cancer therapy within the past twenty years. Bibliometric indicators were calculated using VOSviewer and Biblioshiny. We produced thematic, conceptual, and visualization charts. A total of 14,873 published documents were obtained. The procedure of keyword mapping has effectively identified the main areas of research concentration and prevailing trends within this specific field of study. The significant clusters discovered through theme and hotspot analyses encompassed many topics such as the use of multiple strategies in chemotherapy and different forms of cancer, the study of pharmacokinetics and nanomedicine, as well as the investigation of targeted drug delivery, cytotoxicity, and gene delivery. Liposomes were employed as drug delivery systems so as to selectively target cancer cells and improve the bioavailability of anticancer drugs. The work showcased the capacity to tailor these liposomes for accurate drug delivery by including potent anticancer medications. Our findings not only bring attention to the latest progress in utilizing liposomes for cancer treatment but also underscore the vital need for ongoing research, collaborative efforts, and the effective translation of these breakthroughs into tangible clinical applications, emphasizing the dynamic and evolving nature of cancer therapeutics.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38399410

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is a key regulator for balancing oxygen in the cells. It is a transcription factor that regulates the expression of target genes involved in oxygen homeostasis in response to hypoxia. Recently, research has demonstrated the multiple roles of HIF-1 in the pathophysiology of various diseases, including cancer. It is a crucial mediator of the hypoxic response and regulator of oxygen metabolism, thus contributing to tumor development and progression. Studies showed that the expression of the HIF-1α subunit is significantly upregulated in cancer cells and promotes tumor survival by multiple mechanisms. In addition, HIF-1 has potential contributing roles in cancer progression, including cell division, survival, proliferation, angiogenesis, and metastasis. Moreover, HIF-1 has a role in regulating cellular metabolic pathways, particularly the anaerobic metabolism of glucose. Given its significant and potential roles in cancer development and progression, it has been an intriguing therapeutic target for cancer research. Several compounds targeting HIF-1-associated processes are now being used to treat different types of cancer. This review outlines emerging therapeutic strategies that target HIF-1 as well as the relevance and regulation of the HIF-1 pathways in cancer. Moreover, it addresses the employment of nanotechnology in developing these promising strategies.

3.
Front Physiol ; 13: 1066023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589466

RESUMO

Transient receptor potential vanilloid 1 (TRPV1), a non-selective ligand-gated cation channel with high permeability for Ca2+, has received considerable attention as potential therapeutic target for the treatment of several disorders including pain, inflammation, and hyperlipidemia. In particular, TRPV1 regulates lipid metabolism by mechanisms that are not completely understood. Interestingly, TRPV1 and lipids regulate each other in a reciprocal and complex manner. This review surveyed the recent literature dealing with the role of TRPV1 in the hyperlipidemia-associated metabolic syndrome. Besides TRPV1 structure, molecular mechanisms underlying the regulatory effect of TRPV1 on lipid metabolism such as the involvement of uncoupling proteins (UCPs), ATP-binding cassette (ABC) transporters, peroxisome proliferation-activated receptors (PPAR), sterol responsive element binding protein (SREBP), and hypoxia have been discussed. Additionally, this review extends our understanding of the lipid-dependent modulation of TRPV1 activity through affecting both the gating and the expression of TRPV1. The regulatory role of different classes of lipids such as phosphatidylinositol (PI), cholesterol, estrogen, and oleoylethanolamide (OEA), on TRPV1 has also been addressed.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33380309

RESUMO

OBJECTIVE: Achillea fragrantissima L. (Asteraceae) is a traditionally used medicinal herb in the rural communities of Jordan. METHODS: The present study evaluated the efficacy of the ethanol extract of this species on angiogenesis in both, ex vivo using a rat aortic ring assay and in vivo using a rat excision wound model. RESULTS: In concentrations of 50 and 100 µg/ml, the ethanol extract showed angiogenic stimulatory effect and significantly increased length of capillary protrusions around aorta rings of about 60% in comparison to those of untreated aorta rings. In MCF-7 cells, the ethanol extract of A. fragrantissima stimulated the production of VEGF in a dose-dependent manner. 1% and 5% of ethanol extract of A. fragrantissima containing vaseline based ointment was applied on rat excision wounds for six days and found to be effective in wound healing and maturation of the scar. Both preparations resulted in better wound healing when compared to the untreated control group and vaseline- treated group. This effect was comparable to that induced by MEBO, the positive control. CONCLUSION: The results indicate that A. fragrantissima has a pro-angiogenic effect, which may act through the VEGF signaling pathway.


Assuntos
Achillea , Neovascularização Fisiológica , Extratos Vegetais , Cicatrização , Achillea/química , Animais , Etanol , Extratos Vegetais/farmacologia , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Sci Rep ; 9(1): 14003, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570745

RESUMO

Eugenol, a component of essential oils of medicinal and food plants, has a hypolipidemic effect in experimental animals although its mechanism of action is still unclear. This study aims to explore the mechanism of the hypolipidemic effect of eugenol in rats fed a high cholesterol and fat diet (HCFD). Eugenol significantly reduced total cholesterol (TC), low-density lipoproteins (LDL), atherogenic index (AI) but not high-density lipoproteins (HDL) or triglycerides (TG). Eugenol also decreased steatosis and hepatic inflammation in liver sections, decreased hepatomegaly, and the hepatic marker enzymes alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activity and increased the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) activity in hypercholesterolemic rats. Eugenol did not inhibit hepatic 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase but caused down-regulation of transient receptor potential vanilloid (TRPV1) channels in the liver. Docking simulation using fast, rigid exhaustive docking (FRED) software indicated a tail-up/head-down interaction of eugenol with TRPV1 channel. Data indicate that eugenol does not inhibit HMG-CoA reductase but rather induces its action by interaction with TRPV1 channels.


Assuntos
LDL-Colesterol/metabolismo , Eugenol/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Canais de Cátion TRPV/metabolismo , Animais , Colesterol/sangue , LDL-Colesterol/sangue , Fígado Gorduroso/metabolismo , Lipoproteínas HDL/sangue , Masculino , Simulação de Acoplamento Molecular , Ratos , Ratos Wistar , Canais de Cátion TRPV/efeitos dos fármacos , Triglicerídeos/sangue
6.
J Clin Biochem Nutr ; 62(3): 230-237, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892161

RESUMO

Hypercholesterolemia is a major risk factor for cardiovascular diseases. This study investigated the cholesterol-lowering potential of ß-caryophyllene in a rat model. Hypercholesterolemia was induced by feeding male Wistar rats a high cholesterol and fat diet for 2 weeks. This was followed by oral administration of ß-caryophyllene to hypercholesterolemic rats at 30, 100 and 300 mg/kg b.w. for 4 weeks. A dose of 30 mg/kg of ß-caryophyllene significantly lowered serum total cholesterol, low density lipoprotein and the atherogenic index and significantly increased high density lipoprotein level. Moreover, it ameliorated liver injury as evidenced by decreasing hepatomegaly, macrovesicular steatosis and the activity of hepatic marker enzymes alanine aminotransferase and aspartate aminotransferase. Furthermore, it increased the activity of the antioxidant enzyme superoxide dismutase. This dose of ß-caryophyllene significantly inhibited the activity of hepatic hydroxy-methylglutaryl coenzyme A reductase. Higher doses (100 and 300 mg/kg) of ß-caryophyllene, however, did not induce significant beneficial effects on the studied parameters. These observations demonstrate that ß-caryophyllene has a cholesterol-lowering effect on hypercholesterolemic rats, thus offering protection against hypercholesterolemia-induced diseases such as atherosclerosis and fatty liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA