Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMJ Health Care Inform ; 29(1)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35354641

RESUMO

OBJECTIVES: To develop and evaluate machine learning models to detect patients with suspected undiagnosed non-alcoholic steatohepatitis (NASH) for diagnostic screening and clinical management. METHODS: In this retrospective observational non-interventional study using administrative medical claims data from 1 463 089 patients, gradient-boosted decision trees were trained to detect patients with likely NASH from an at-risk patient population with a history of obesity, type 2 diabetes mellitus, metabolic disorder or non-alcoholic fatty liver (NAFL). Models were trained to detect likely NASH in all at-risk patients or in the subset without a prior NAFL diagnosis (at-risk non-NAFL patients). Models were trained and validated using retrospective medical claims data and assessed using area under precision recall curves and receiver operating characteristic curves (AUPRCs and AUROCs). RESULTS: The 6-month incidences of NASH in claims data were 1 per 1437 at-risk patients and 1 per 2127 at-risk non-NAFL patients . The model trained to detect NASH in all at-risk patients had an AUPRC of 0.0107 (95% CI 0.0104 to 0.0110) and an AUROC of 0.84. At 10% recall, model precision was 4.3%, which is 60× above NASH incidence. The model trained to detect NASH in the non-NAFL cohort had an AUPRC of 0.0030 (95% CI 0.0029 to 0.0031) and an AUROC of 0.78. At 10% recall, model precision was 1%, which is 20× above NASH incidence. CONCLUSION: The low incidence of NASH in medical claims data corroborates the pattern of NASH underdiagnosis in clinical practice. Claims-based machine learning could facilitate the detection of patients with probable NASH for diagnostic testing and disease management.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Aprendizado de Máquina , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Prescrições , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA