Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(38): e202300215, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946535

RESUMO

Sensitivity in FlowNMR spectroscopy for reaction monitoring often suffers from low levels of pre-magnetisation due to limited residence times of the sample in the magnetic field. While this in-flow effect is tolerable for high sensitivity nuclei such as 1 H and 19 F, it significantly reduces the signal-to-noise ratio in 31 P and 13 C spectra, making FlowNMR impractical for low sensititvity nuclei at low concentrations. Paramagnetic relaxation agents (PRAs), which enhance polarisation and spin-lattice relaxation, could eliminate the adverse in-flow effect and improve the signal-to-noise ratio. Herein, [Co(acac)3 ], [Mn(acac)3 ], [Fe(acac)3 ], [Cr(acac)3 ], [Ni(acac)2 ]3, [Gd(tmhd)3 ] and [Cr(tmhd)3 ] are investigated for their effectiveness in improving signal intensity per unit time in FlowNMR applications under the additional constraint of chemical inertness towards catalytically active transition metal complexes. High-spin Cr(III) acetylacetonates emerged as the most effective compounds, successfully reducing 31 P T1 values four- to five-fold at PRA concentrations as low as 10 mM without causing adverse line broadening. Whereas [Cr(acac)3 ] showed signs of chemical reactivity with a mixture of triphenylphosphine, triphenylphosphine oxide and triphenylphosphate over the course of several hours at 80° C, the bulkier [Cr(tmhd)3 ] was stable and equally effective as a PRA under these conditions. Compatibility with a range of representative transition metal complexes often used in homogeneous catalysis has been investigated, and application of [Cr(tmhd)3 ] in significantly improving 1 H and 31 P{1 H} FlowNMR data quality in a Rh-catalysed hydroformylation reaction has been demonstrated. With the PRA added, 13 C relaxation times were reduced more than six-fold, allowing quantitative reaction monitoring of substrate consumption and product formation by 13 C{1 H} FlowNMR spectroscopy at natural abundance.


Assuntos
Complexos de Coordenação , Elementos de Transição , Complexos de Coordenação/química , Espectroscopia de Ressonância Magnética/métodos
2.
J Phys Chem A ; 126(16): 2578-2589, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420816

RESUMO

The extraordinary sensitivity of 129Xe, hyperpolarized by spin-exchange optical pumping, is essential for magnetic resonance imaging and spectroscopy in life and materials sciences. However, fluctuations of the polarization over time still limit the reproducibility and quantification with which the interconnectivity of pore spaces can be analyzed. Here, we present a polarizer that not only produces a continuous stream of hyperpolarized 129Xe but also maintains stable polarization levels on the order of hours, independent of gas flow rates. The polarizer features excellent magnetization production rates of about 70 mL/h and 129Xe polarization values on the order of 40% at moderate system pressures. Key design features include a vertically oriented, large-capacity two-bodied pumping cell and a separate Rb presaturation chamber having its own temperature control, independent of the main pumping cell oven. The separate presaturation chamber allows for precise control of the Rb vapor density by restricting the Rb load and varying the temperature. The polarizer is both compact and transportable─making it easily storable─and adaptable for use in various sample environments. Time-evolved two-dimensional (2D) exchange spectra of 129Xe absorbed in the microporous metal-organic framework CAU-1-AmMe are presented to highlight the quantitative nature of the device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA