Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7967): 974-980, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258677

RESUMO

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Assuntos
Oceanos e Mares , Fósforo , Água do Mar , Atmosfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Sedimentos Geológicos/química , História Antiga , Hipóxia/metabolismo , Oxigênio/análise , Oxigênio/história , Oxigênio/metabolismo , Fósforo/análise , Fósforo/história , Fósforo/metabolismo , Água do Mar/química , Sulfatos/metabolismo , Carbonatos/análise , Carbonatos/metabolismo , Oxirredução
2.
Geobiology ; 18(3): 348-365, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32011800

RESUMO

Ediacaran sediments record an unusual global carbon cycle perturbation that has been linked to widespread oceanic oxygenation, the Shuram negative C isotope excursion (NCIE). However, proxy-based estimates of global ocean redox conditions during this event have been limited largely due to proxy specificity (e.g., euxinic sediments for Mo and U isotopes). Modern global seawater documents a homogenous Tl isotope composition (ε205 Tl = -6.0) due to significant manganese oxide burial, which is recorded in modern euxinic sediments. Here, we provide new data documenting that sediments deposited beneath reducing but a non-sulfidic water column from the Santa Barbara Basin (ε205 Tl = -5.6 ± 0.1) also faithfully capture global seawater Tl isotope values. Thus, the proxy utilization of Tl isotopes can extend beyond strictly euxinic settings. Second, to better constrain the global redox conditions during the Shuram NCIE, we measured Tl isotopes of locally euxinic and ferruginous shales of the upper Doushantuo Formation, South China. The ε205 Tl values of these shales exhibit a decreasing trend from ≈-3 to ≈-8, broadly coinciding with the onset of Shuram NCIE. There are ε205 Tl values (-5.1 to -7.8) during the main Shuram NCIE interval that approach values more negative than modern global seawater. These results suggest that manganese oxide burial was near or even greater than modern burial fluxes, which is likely linked to an expansion of oxic conditions. This ocean oxygenation may have been an important trigger for the Shuram NCIE and evolution of Ediacaran-type biota. Subsequently, Tl isotopes show an increasing trend from the modern ocean value to values near the modern global inputs or even heavier (ε205 Tl ≈ -2.5 ~ 0.4), occurring prior to recovery from the NCIE. These records may suggest that there was a decrease in the extent of oxygenated conditions in the global oceans during the late stage of the Shuram NCIE.


Assuntos
Água do Mar/química , China , Sedimentos Geológicos , Isótopos , Oceanos e Mares , Tálio
3.
Science ; 361(6398): 174-177, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29853552

RESUMO

Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine-to-calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in the partial pressure of oxygen in the atmosphere at ~400 million years (Ma) ago and reveals a step change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma ago. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma ago.


Assuntos
Atmosfera/química , Evolução Biológica , Oxigênio/análise , Plâncton , Cálcio/análise , Carbonatos/análise , Iodo/análise , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA