Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37401172

RESUMO

Despite the important roles that marine sponges play in ecosystem functioning and structuring, little is known about how the sponge holobiont responds to local anthropogenic impacts. Here we assess the influence of an impacted environment (Praia Preta) on the microbial community associated with the endemic sponge Aplysina caissara in comparison to a less-impacted area (Praia do Guaecá) from the coast of São Paulo state (Brazil, southwestern Atlantic coast). We hypothesized that the local anthropogenic impacts will change the microbiome of A. caissara and that the community assembly will be driven by a different process (i.e. deterministic versus stochastic) under distinct levels of impact. The microbiome at the amplicon sequence variants level was found to be statistically distinct between sponges from the different sites, and this was also seen for the microbial communities of the surrounding seawater and sediments. Microbial communities of A. caissara from both sites were found to be assembled by deterministic processes, even though the sites presented distinct anthropogenic impacts, showing a pivotal role of the sponge host in selecting its own microbiome. Overall, this study revealed that local anthropogenic impacts altered the microbiome of A. caissara; however, assembly processes are largely determined by the sponge host.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Microbiota , Poríferos , Animais , Brasil , Microbiota/genética , Filogenia , Poríferos/microbiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Sedimentos Geológicos/microbiologia , Interações entre Hospedeiro e Microrganismos , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética
2.
Front Microbiol ; 12: 674004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168631

RESUMO

Marine sponges are known to harbor a diverse and complex microbiota; however, a vast majority of surveys have been investigating the prokaryotic communities in the north hemisphere and Australia. In addition, the mechanisms of microbial community assembly are poorly understood in this pivotal player of the ecosystem. Thus, this survey addressed the holobiome of the sponge species in the São Paulo region (Brazil) for the first time and investigated the contribution of neutral and niche processes of prokaryotic, fungal, and unicellular eukaryotic assemblage in three sympatric species Aplysina caissara, Aplysina fulva, and Tedania ignis along with environmental samples. The compositions of the holobiome associated with the sponges and detected in environmental samples were strikingly different. Remarkably, between 47 and 88% of the assigned operational taxonomic units (OTUs) were specifically associated with sponge species. Moreover, around 77, 69, and 53% of the unclassified OTUs from prokaryotic, fungal, and unicellular eukaryotic communities, respectively, showed less than 97% similarity with well-known databases, suggesting that sponges from the southwestern Atlantic coast are an important source of microbial novelty. These values are even higher, around 80 and 61% of the unclassified OTUs, when excluding low abundance samples from fungal and unicellular eukaryotic datasets, respectively. Host species were the major driver shaping the sponge-associated microbial community. Deterministic processes were primarily responsible for the assembly of microbial communities in all sponge species, while neutral processes of prokaryotic and fungal community assembly were also detected in the sympatric A. caissara and T. ignis replicates, respectively. Most of the species-rich sponge-associated lineages from this region are also found in the Northern seas and many of them might play essential roles in the symbioses, such as biosynthesis of secondary metabolites that exhibit antimicrobial and antiviral activities, as well as provide protection against host predation. Overall, in this study the microbiota was assembled by interactions with the host sponge in a deterministic-based manner; closely related sponge species shared a strong phylogenetic signal in their associated prokaryotic and fungal community traits and Brazilian sponges were a reservoir of novel microbial species.

3.
Noncoding RNA ; 3(1)2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-29657283

RESUMO

Non-coding RNAs (ncRNAs) constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs), which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM). We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane (Saccharum spp.) and in maize (Zea mays). From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms.

4.
Microbiol Mol Biol Rev ; 79(3): 293-320, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26136581

RESUMO

All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.


Assuntos
Endófitos/fisiologia , Plantas/microbiologia , Animais , Evolução Molecular , Genes Bacterianos , Genes Fúngicos , Variação Genética , Humanos , Desenvolvimento Vegetal , Doenças das Plantas/microbiologia , Plantas/metabolismo , RNA Ribossômico 16S/genética , Simbiose
5.
PLoS One ; 7(2): e30438, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363438

RESUMO

Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed.


Assuntos
Endófitos/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Sementes/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Sequência de Bases , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Brotos de Planta/microbiologia , Reação em Cadeia da Polimerase , Rizosfera , Microbiologia do Solo
6.
Trends Microbiol ; 16(10): 463-71, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18789693

RESUMO

Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by bacterially produced 1-aminocyclopropane-1-carboxylate deaminase is a key trait that enables interference with the physiology of the host plant. Endophytes with this capacity might profit from association with the plant, because colonization is enhanced. In turn, host plants benefit by stress reduction and increased root growth. This mechanism leads to the concept of 'competent' endophytes, defined as endophytes that are equipped with genes important for maintenance of plant-endophyte associations. The ecological role of these endophytes and their relevance for plant growth are discussed here.


Assuntos
Fenômenos Fisiológicos Bacterianos , Desenvolvimento Vegetal , Plantas/microbiologia , Proteínas de Bactérias/metabolismo , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/metabolismo
7.
FEMS Microbiol Ecol ; 64(3): 362-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18422633

RESUMO

Bacterial and archaeal communities in sediments obtained from three geographically-distant mud volcanoes, a control site and a microbial mat in the Eastern Mediterranean deep-sea were characterized using direct 16S rRNA gene analyses. The data were thus in relation to the chemical characteristics of the (stratified) habitats to infer community structure-habitat relationships. The bacterial sequences in the different habitats were related to those of Actinobacteria, Bacilli, Chloroflexi, Alpha-, Beta-, Gamma-, Delta- and Epsilonproteobacteria and unclassified bacteria, including the JS1 group. The archaeal sequences found were affiliated with those of the Methanosarcinales, Thermoplasmales, Halobacteriales and Crenarchaea belonging to marine benthic group I and B, as well as MCG group archaea. In each sample, the communities were diverse and unique at the phylotype level. However, at higher taxonomic levels, similar groups were found in different sediments, and similar depth layers tended to contain similar communities. The sequences that dominated in all top layers (as well as in the mat) probably represented organisms involved in aerobic heterotrophy, sulfide-based chemoautotrophy and methanotrophy and/or methylotrophy. Sequences of organisms most likely involved in anaerobic methane oxidation, sulfate reduction and anaerobic heterotrophy were predominantly found in deeper layers. The data supported the notion of (1) uniqueness of each habitat at fine taxonomic levels, (2) stratification in depth and (3) conservation of function in the sediments.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Archaea/genética , Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico , Mar Mediterrâneo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA