Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610646

RESUMO

Urban forests consist of various environments from intensely managed spaces to conservation areas and are often reservoirs of a diverse range of invasive pathogens due to their introduction through the nursery trade. Pathogens are likely to persist because the urban forest contains a mixture of native and exotic plant species, and the environmental conditions are often less than ideal for the trees. To test the impact of different land management approaches on the Phytophthora community, 236 discrete soil and root samples were collected from declining trees in 91 parks and nature reserves in Joondalup, Western Australia (WA). Sampling targeted an extensive variety of declining native trees and shrubs, from families known to be susceptible to Phytophthora. A sub-sample was set aside and DNA extracted for metabarcoding using Phytophthora-specific primers; the remaining soil and root sample was baited for the isolation of Phytophthora. We considered the effect on the Phytophthora community of park class and area, soil family, and the change in canopy cover or health as determined through sequential measurements using remote sensing. Of the 236 samples, baiting techniques detected Phytophthora species from 24 samples (18 parks), while metabarcoding detected Phytophthora from 168 samples (64 parks). Overall, forty-four Phytophthora phylotypes were detected. Considering only sampling sites where Phytophthora was detected, species richness averaged 5.82 (range 1-21) for samples and 9.23 (range 2-24) for parks. Phytophthora multivora was the most frequently found species followed by P. arenaria, P. amnicola and P. cinnamomi. While park area and canopy cover had a significant effect on Phytophthora community the R2 values were very low, indicating they have had little effect in shaping the community. Phytophthora cinnamomi and P. multivora, the two most invasive species, often co-occurring (61% of samples); however, the communities with P. multivora were more common than those with P. cinnamomi, reflecting observations over the past decade of the increasing importance of P. multivora as a pathogen in the urban environment.

2.
IMA Fungus ; 7(2): 253-263, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27990332

RESUMO

Teratosphaeria destructans and T. viscida are serious pathogens causing leaf, bud and shoot blight diseases of Eucalyptus plantations in the subtropics and tropics of South-East Asia (T. destructans) and North Queensland, Australia (T. viscida). During disease surveys in northern Western Australia and the Northern Territory of Australia, symptoms resembling those of T. destructans were observed on young and adult leaves of native and plantation Eucalyptus spp. and its hybrids. Phylogenetic studies revealed Teratosphaeria species associated with these symptoms are new taxonomic novelties described here as T. novaehollandiae and T. tiwiana spp. nov. Isolates from previous records of T. destructans recorded in Australia were re-examined and based upon the phylogenetic evidence are reassigned to these new taxa. We conclude that T. destructans is absent from Australia.

3.
Ecol Appl ; 25(7): 1790-806, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591446

RESUMO

State-and-transition models are increasingly used as a tool to inform management of post-disturbance succession and effective conservation of biodiversity in production landscapes. However, if they are to do this effectively, they need to represent faunal, as well as vegetation, succession. We assessed the congruence between vegetation and avian succession by sampling avian communities in each state of a state-and-transition model used to inform management of post-mining restoration in a production landscape in southwestern Australia. While avian communities differed significantly among states classified as on a desirable successional pathway, they did not differ between desirable and deviated states of the same post-mining age. Overall, we concluded there was poor congruence between vegetation and avian succession in this state-and-transition model. We identified four factors that likely contributed to this lack of congruence, which were that long-term monitoring of succession in restored mine pits was not used to update and improve models, states were not defined based on ecological processes and thresholds, states were not defined by criteria that were important in structuring the avian community, and states were not based on criteria that related to values in the reference community. We believe that consideration of these four factors in the development of state-and-transition models should improve their ability to accurately represent faunal, as well as vegetation, succession. Developing state-and-transition models that better incorporate patterns of faunal succession should improve the ability to manage post-disturbance succession across a range of ecosystems for biodiversity conservation.


Assuntos
Aves/fisiologia , Recuperação e Remediação Ambiental , Modelos Biológicos , Plantas/classificação , Animais , Aves/classificação , Monitoramento Ambiental , Mineração , Dinâmica Populacional
4.
IMA Fungus ; 6(2): 319-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26734543

RESUMO

A new homothallic Phytophthora species, isolated in Western Australia (WA), is described as Phytophthora boodjera sp. nov. It produces persistent, papillate sporangia, oogonia with thick-walled oospores, and paragynous antheridia. Although morphologically similar to P. arenaria, phylogenetic analyses of the ITS, cox1, HSP90, ß-tubulin and enolase gene regions revealed P. boodjera as a new species. In addition, P. boodjera has a higher optimal temperature for growth and a faster growth rate. Phytophthora boodjera has only recently been found in Western Australia and has mostly been isolated from dead and dying Eucalyptus seedlings in nurseries and from urban tree plantings, and occasionally from disturbed natural ecosystems. It is found in association with declining and dying Agonis flexuosa, Banksia media, B. grandis, Corymbia calophylla, Eucalyptus spp,. and Xanthorrhoea preissii. The status of P. alticola was also reviewed. The loss of all isolates associated with the original description except one; discrepancies in both sequence data and morphology of the remaining isolate with that presented the original description, and inconclusive holotype material places the status of this species in doubt.

5.
Crit Rev Microbiol ; 35(3): 169-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19624253

RESUMO

Species of the genus Phytophthora are arguably the most destructive plant pathogens causing widespread damage to many horticultural and ornamental species, and to native ecosystems throughout the world. Globalization has increased the volume of plants being transported over long distances and has increased the spread of Phytophthora species. As traditional detection methods such as baiting or direct isolation are incapable of handling the large volume of material to be tested, researchers have developed more rapid and specific antibody and DNA based tests. This review compares the performance of the different types of tests used for detection of Phytophthora.


Assuntos
Técnicas Microbiológicas/métodos , Phytophthora/isolamento & purificação , Doenças das Plantas/microbiologia , Plantas/microbiologia , Proteínas de Algas/isolamento & purificação , DNA de Algas/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Phytophthora/química , Phytophthora/genética , Reação em Cadeia da Polimerase/métodos
6.
Plant Dis ; 93(3): 215-223, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30764178

RESUMO

For 30 years, large-scale aerial photography has been used to map the extent of Phytophthora dieback disease in native forests in the southwest of Western Australia, with validation of the observations involving routine testing of soil and root samples for the presence of Phytophthora cinnamomi. In addition to P. cinnamomi, six morpho-species have been identified using this technique: P. citricola, P. megasperma, P. cryptogea, P. drechsleri, P. nicotianae, and P. boehmeriae. In recent years, many new Phytophthora species have been described worldwide, often with similar morphology to existing species; thus, as many of the isolates collected in Western Australia have been difficult to identify based on morphology, molecular identification of the morpho-species is required. Based on amplification of the internal transcribed spacer (ITS) region of the rDNA gene, sequence data of more than 230 isolates were compared with those of existing species and undescribed taxa. P. inundata, P. asparagi, P. taxon PgChlamydo, P. taxon personii, and P. taxon niederhauserii were identified based on sequence data. Phylogenetic analysis revealed that nine potentially new and undescribed taxa can be distinguished. Several of the new taxa are morphologically indistinguishable from species such as P. citricola, P. drechsleri, and P. megasperma. In some cases, the new taxa are closely related to species with similar morphology (e.g., P.sp.4 and P. citricola). However, the DNA sequences of other new taxa such as P.sp.3 and P.sp.9 show that they are not closely related to morphologically similar species P. drechsleri and P. megasperma, respectively. Most of the new taxa have been associated with dying Banksia spp., while P.sp.2 and P.sp.4 have also been isolated from dying Eucalyptus marginata (jarrah). Some taxa (P.sp.3, 6, and 7) appear to have limited distribution, while others like P.sp.4 are widespread.

7.
FEMS Microbiol Lett ; 268(1): 22-33, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17250757

RESUMO

The majority of Eucalyptus species are native to Australia, but worldwide there are over 3 million ha of exotic plantations, especially in the tropics and subtropics. Of the numerous known leaf diseases, three species of Phaeophleospora can cause severe defoliation of young Eucalyptus; Phaeophleospora destructans, Phaeophleospora eucalypti and Phaeophleospora epicoccoides. Phaeophleospora destructans has a major impact on seedling survival in Asia and has not, as yet, been found in Australia where it is considered a serious threat to the biosecurity of native eucalypts. It can be difficult to distinguish Phaeophleospora species based on symptoms and micromorphology and an unequivocal diagnostic tool for quarantine purposes would be useful. In this study, a multiple gene genealogy of these Phaeophleospora species and designed specific primers has been constructed to detect their presence from leaf samples. The phylogenetic position of these Phaeophleospora species within Mycosphaerella was established. They are closely related to each other and to other important Eucalyptus pathogens, Mycosphaerella nubilosa, Mycosphaerella cryptica and Colletogloeopsis zuluensis. The specific primers developed can now be used for diagnostic and screening purposes within Australia.


Assuntos
Ascomicetos/genética , Eucalyptus/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Primers do DNA , DNA Fúngico/análise , DNA Fúngico/isolamento & purificação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA