Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 3-16, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193155

RESUMO

Water reuse is rapidly becoming an integral feature of resilient water systems, where municipal wastewater undergoes advanced treatment, typically involving a sequence of ultrafiltration (UF), reverse osmosis (RO), and an advanced oxidation process (AOP). When RO is used, a concentrated waste stream is produced that is elevated in not only total dissolved solids but also metals, nutrients, and micropollutants that have passed through conventional wastewater treatment. Management of this RO concentrate─dubbed municipal wastewater reuse concentrate (MWRC)─will be critical to address, especially as water reuse practices become more widespread. Building on existing brine management practices, this review explores MWRC management options by identifying infrastructural needs and opportunities for multi-beneficial disposal. To safeguard environmental systems from the potential hazards of MWRC, disposal, monitoring, and regulatory techniques are discussed to promote the safety and affordability of implementing MWRC management. Furthermore, opportunities for resource recovery and valorization are differentiated, while economic techniques to revamp cost-benefit analysis for MWRC management are examined. The goal of this critical review is to create a common foundation for researchers, practitioners, and regulators by providing an interdisciplinary set of tools and frameworks to address the impending challenges and emerging opportunities of MWRC management.


Assuntos
Ultrafiltração , Águas Residuárias , Epicloroidrina , Nutrientes , Água
2.
Int J Syst Evol Microbiol ; 67(4): 824-831, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27902293

RESUMO

An obligately piezophilic strain was isolated from an amphipod crustacean obtained in the Challenger Deep region of the Mariana Trench during the DEEPSEA CHALLENGE expedition. The strain, MTCD1T, grew at extremely high hydrostatic pressures, with a growth range of 80-140 MPa (optimum, 120 MPa) at 6 °C. Phylogenetic analyses based on the 16S rRNA gene sequence indicate that it is closely affiliated with the genus Colwellia. Comparative 16S rRNA gene sequence analyses revealed 95.7, 95.5 and 95.2 % similarity to Colwellia maris ABE-1T, Colwellia piezophila Y233GT and Colwellia psychrerythraea ATCC 27364T, respectively. The major cellular fatty acids were C16 : 1, C16 : 0 and C22 : 6 (docosahexaenoic acid), and the sole isoprenoid quinone produced was ubiqinone-8. DNA G+C content was 48.6 mol%. The strain was positive for oxidase and catalase activities. Based on the results from this study, strain MTCD1T is a novel Gram-negative species of the genus Colwellia, and the name Colwellia marinimaniae sp. nov. (type strain MTCD1T=ATCC TSD-5T=JCM 30270T) is proposed. It is the most piezophilic organism yet described.


Assuntos
Alteromonadaceae/classificação , Anfípodes/microbiologia , Filogenia , Alteromonadaceae/genética , Alteromonadaceae/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/química , Pressão Hidrostática , Hibridização de Ácido Nucleico , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA