Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(41): 22562-22569, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34382295

RESUMO

Using 4-(4'-pyridyl)aniline as a simple organic building block in combination with three different aldehyde components together with metal(II) salts gave three different Fe8 Pt6 -cubes and their corresponding Zn8 Pt6 analogues by employing the subcomponent self-assembly approach. Whereas the use of zinc(II) salts gave rise to diamagnetic cages, iron(II) salts yielded metallosupramolecular cages that show spin-crossover behaviour in solution. The spin-transition temperature T1/2 depends on the incorporated aldehyde component, giving a construction kit for the deliberate synthesis of spin-crossover compounds with tailored transition properties. Incorporation of 4-thiazolecarbaldehyde or N-methyl-2-imidazole-carbaldehyde yielded cages that undergo spin-crossover around room temperature whereas the cage obtained using 1H-4-imidazolecarbaldehyde shows a spin-transition at low temperatures. Three new structures were characterized by synchrotron X-ray diffraction and all structures were characterized by mass spectrometry, NMR and UV/Vis spectroscopy.

2.
Beilstein J Org Chem ; 16: 2701-2708, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214795

RESUMO

Employing 4-ethynylaniline as a simple organic ligand we were able to prepare the stable trans-bis(acetylide)platinum(II) complex [Pt(L1)2(PBu3)2] as a linear metalloligand. The reaction of this metalloligand with iron(II) cations and pyridine-2-carbaldehyde according to the subcomponent self-assembly approach yielded decanuclear heterobimetallic tetrahedron [Fe4Pt6(L2)12](OTf)8. Thus, combination of these two design concepts - the subcomponent self-assembly strategy and the complex-as-a-ligand approach - ensured a fast and easy synthesis of large heterobimetallic coordination cages of tetrahedral shape with a diameter of more than 3 nm as a mixture of all three possible T-, S 4- and C 3-symmetric diastereomers. The new complexes were characterized by NMR and UV-vis spectroscopy and ESI mass spectrometry. Using GFN2-xTB we generated energy-minimized models of the diastereomers of this cage that further corroborated the results from analytical findings.

3.
Chemistry ; 26(59): 13332-13346, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32297380

RESUMO

Metallosupramolecular chemistry has attracted the interest of generations of researches due to the versatile properties and functionalities of oligonuclear coordination complexes. Quite a number of different discrete cages were investigated, mostly consisting of only one type of ligand and one type of metal cation. Looking for ever more complex structures, heterobimetallic complexes became more and more attractive, as they give access to new structural motifs and functions. In the last years substantial success has been made in the design and synthesis of cages consisting of more than one type of metal cations, and a rapidly growing number of functional materials has appeared in the literature. This Minireview describes recent developments in the field of discrete heterometallic macrocycles and cages focusing on functional materials that have been used as host-systems or as magnetic, photo-active, redox-active, and even catalytically active materials.

4.
Angew Chem Int Ed Engl ; 59(8): 3195-3200, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31788925

RESUMO

Two new heterobimetallic cages, a trigonal-bipyramidal and a cubic one, were assembled from the same mononuclear metalloligand by adopting the molecular library approach, using iron(II) and palladium(II) building blocks. The ligand system was designed to readily assemble through subcomponent self-assembly. It allowed the introduction of steric strain at the iron(II) centres, which stabilizes its paramagnetic high-spin state. This steric strain was utilized to drive dynamic complex-to-complex transformations with both the metalloligand and heterobimetallic cages. Addition of sterically less crowded subcomponents as a chemical stimulus transformed all complexes to their previously reported low-spin analogues. The metalloligand and bipyramid incorporated the new building block more readily than the cubic cage, probably because the geometric structure of the sterically crowded metalloligand favours the cube formation. Furthermore it was possible to provoke structural transformations upon addition of more favourable chelating ligands, converting the cubic structures into bipyramidal ones.

5.
Inorg Chem ; 57(7): 3507-3515, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29185725

RESUMO

Two novel heterobimetallic complexes, a trigonal-bipyramidal and a cubic one, have been synthesized and characterized using the same C3-symmetric metalloligand, prepared by a simple subcomponent self-assembly strategy. Adopting the molecular library approach, we chose a mononuclear, preorganized iron(II) complex as the metalloligand capable of self-assembly into a trigonal-bipyramidal or a cubic aggregate upon coordination to cis-protected C2-symmetric palladium(II) or unprotected tetravalent palladium(II) ions, respectively. The trigonal-bipyramidal complex was characterized by NMR and UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction. The cubic structure was characterized by NMR and UV-vis spectroscopy and ESI-MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA