Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
ASAIO J ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38165978

RESUMO

Microfluidic membrane oxygenators are designed to mimic branching vasculature of the native lung during extracorporeal lung support. To date, scaling of such devices to achieve clinically relevant blood flow and lung support has been a limitation. We evaluated a novel multilayer microfluidic blood oxygenator (BLOx) capable of supporting 750-800 ml/min blood flow versus a standard hollow fiber membrane oxygenator (HFMO) in vivo during veno-venous extracorporeal life support for 24 hours in anesthetized, mechanically ventilated uninjured swine (n = 3/group). The objective was to assess feasibility, safety, and biocompatibility. Circuits remained patent and operated with stable pressures throughout 24 hours. No group differences in vital signs or evidence of end-organ damage occurred. No change in plasma free hemoglobin and von Willebrand factor multimer size distribution were observed. Platelet count decreased in BLOx at 6 hours (37% dec, P = 0.03), but not in HFMO; however, thrombin generation potential was elevated in HFMO (596 ± 81 nM·min) versus BLOx (323 ± 39 nM·min) at 24 hours (P = 0.04). Other coagulation and inflammatory mediator results were unremarkable. BLOx required higher mechanical ventilator settings and showed lower gas transfer efficiency versus HFMO, but the stable device performance indicates that this technology is ready for further performance scaling and testing in lung injury models and during longer use conditions.

2.
Bio Protoc ; 13(18): e4814, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753473

RESUMO

Device-induced thrombosis remains a major complication of extracorporeal life support (ECLS). To more thoroughly understand how blood components interact with the artificial surfaces of ECLS circuit components, assessment of clot deposition on these surfaces following clinical use is urgently needed. Scanning electron microscopy (SEM), which produces high-resolution images at nanoscale level, allows visualization and characterization of thrombotic deposits on ECLS circuitry. However, methodologies to increase the quantifiability of SEM analysis of ECLS circuit components have yet to be applied clinically. To address these issues, we developed a protocol to quantify clot deposition on ECLS membrane oxygenator gas transfer fiber sheets through digital and SEM imaging techniques. In this study, ECLS membrane oxygenator fiber sheets were obtained, fixed, and imaged after use. Following a standardized process, the percentage of clot deposition on both digital images and SEM images was quantified using ImageJ through blind reviews. The interrater reliability of quantitative analysis among reviewers was evaluated. Although this protocol focused on the analysis of ECLS membrane oxygenators, it is also adaptable to other components of the ECLS circuits such as catheters and tubing. Key features • Quantitative analysis of clot deposition using digital and scanning electron microscopy (SEM) techniques • High-resolution images at nanoscale level • Extracorporeal life support (ECLS) devices • Membrane oxygenators • Blood-contacting surfaces Graphical overview.

3.
J Biomed Mater Res B Appl Biomater ; 111(4): 923-932, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36404401

RESUMO

Numerous biomaterials have been developed for application in blood-contacting medical devices to prevent thrombosis; however, few materials have been applied to full-scale devices and evaluated for hemocompatibility under clinical blood flow conditions. We applied a dual-action slippery liquid-infused (LI) nitric oxide (NO)-releasing material modification (LINO) to full-scale blood circulation tubing for extracorporeal lung support and evaluated the tubing ex vivo using swine whole blood circulated for 6 h at a clinically relevant flow. LINO tubing was compared to unmodified tubing (CTRL) and isolated LI and NO-releasing modifications (n = 9/group). The primary objective was to evaluate safety and blood compatibility of this approach, prior to progression to in vivo testing of efficacy in animal models. The secondary objective was to evaluate coagulation outcomes relevant to hemocompatibility. No untoward effects of the coating, such as elevated methemoglobin fraction, were observed. Additionally, LINO delayed platelet loss until 6 h versus the reduction in platelet count in CTRL at 3 h. At 6 h, LINO significantly reduced the concentration of platelets in an activated P-selectin expressing state versus CTRL (32 ± 1% decrease, p = .02). Blood clot deposition was significantly reduced on LINO blood pumps (p = .007) and numerically reduced on tubing versus CTRL. Following blood exposure, LINO tubing continued to produce a measurable NO-flux (0.20 ± 0.06 × 10-10  mol cm-2  min-1 ). LINO is a potential solution to reduce circuit-related bleeding and clotting during extracorporeal organ support, pending future extended testing in vivo using full-scale extracorporeal lung support devices.


Assuntos
Óxido Nítrico , Trombose , Animais , Suínos , Óxido Nítrico/farmacologia , Circulação Extracorpórea , Plaquetas , Coagulação Sanguínea , Materiais Biocompatíveis/farmacologia , Trombose/prevenção & controle
4.
Perfusion ; : 2676591221130175, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36196521

RESUMO

BACKGROUND: Patients with kidney failure are at risk for lethal complications from hyperkalemia. Resuscitation, medications, and hemodialysis are used to mitigate increased potassium (K+) levels in circulating blood; however, these approaches may not always be readily available or effective, especially in a resource limited environment. We tested a sorbent cartridge (KC, K+ontrol CytoSorbents Medical Inc., Monmouth Junction, New Jersey) which contains a resin adsorber for K+. The objective of this study was to test the utility of KC in an ex vivo circulation system. We hypothesized that KC reduces K+ levels in extracorporeal circulation of donor swine whole blood infused with KCl. METHODS: A six-hour circulation study was carried out using KC, a NxStage (NxStage Medical, Inc., Lawrence, MA) membrane, blood bag containing heparinized whole blood with KCl infusion, 3/16-inch ID tubing, a peristaltic pump, and flow sensors. The NxStage permeate line was connected back to the main circuit in the Control group (n = 6), creating a recirculation loop. For KC group (n = 6), KC was added to the recirculation loop, and a continuous infusion of KCl at 10 mEq/hour was administered for two hours. Blood samples were acquired at baseline and every hour for 6 h. RESULTS: In the control group, K+ levels remained at ∼9 mmol/L; 9.1 ± 0.4 mmol/L at 6 h. In the KC group, significant decreases in K+ at hour 1 (4.3 ± 0.3 mmol/L) and were sustained for the experiment duration equilibrating at 4.6 ± 0.4 mmol/L after 6 h (p = 0.042). Main loop blood flow was maintained under 400 mL/min; recirculation loop flow varied between 60 and 70 mL/min in the control group and 45-55 mL/min in the KC group. Decreases in recirculation loop flow in KC group required 7% increase of pump RPM. CONCLUSIONS: During ex-vivo extracorporeal circulation using donor swine blood, KC removed approximately 50% of K+, normalizing circulating levels.

5.
ASAIO J ; 68(10): 1312-1319, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194101

RESUMO

Extracorporeal membrane oxygenation (ECMO) has been advancing rapidly due to a combination of rising rates of acute and chronic lung diseases as well as significant improvements in the safety and efficacy of this therapeutic modality. However, the complexity of the ECMO blood circuit, and challenges with regard to clotting and bleeding, remain as barriers to further expansion of the technology. Recent advances in microfluidic fabrication techniques, devices, and systems present an opportunity to develop new solutions stemming from the ability to precisely maintain critical dimensions such as gas transfer membrane thickness and blood channel geometries, and to control levels of fluid shear within narrow ranges throughout the cartridge. Here, we present a physiologically inspired multilayer microfluidic oxygenator device that mimics physiologic blood flow patterns not only within individual layers but throughout a stacked device. Multiple layers of this microchannel device are integrated with a three-dimensional physiologically inspired distribution manifold that ensures smooth flow throughout the entire stacked device, including the critical entry and exit regions. We then demonstrate blood flows up to 200 ml/min in a multilayer device, with oxygen transfer rates capable of saturating venous blood, the highest of any microfluidic oxygenator, and a maximum blood flow rate of 480 ml/min in an eight-layer device, higher than any yet reported in a microfluidic device. Hemocompatibility and large animal studies utilizing these prototype devices are planned. Supplemental Visual Abstract, http://links.lww.com/ASAIO/A769.


Assuntos
Biomimética , Microfluídica , Animais , Desenho de Equipamento , Oxigênio , Oxigenadores
6.
ACS Biomater Sci Eng ; 8(8): 3438-3449, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35776832

RESUMO

Medical devices that require substantial contact between blood and a foreign surface would be dramatically safer if constructed from materials that prevent clot formation and coagulation disturbance at the blood-biomaterial interface. Nitric oxide (NO), an endogenous inhibitor of platelet activation in the vascular endothelium, could provide anticoagulation at the blood-surface interface when applied to biomaterials. We investigated an application of a copper-based metal-organic framework, H3[(Cu4Cl)3(BTTri)8-(H2O)12]·72H2O where H3BTTri = 1,3,5-tris(1H-1,2,3-triazole-5-yl)benzene] (CuBTTri), which has been shown to be an effective catalyst to generate NO from S-nitrosothiols that are endogenously present in blood. A method was developed to apply a CuBTTri composite coating to Tygon medical tubing used for extracorporeal lung support devices. The stability and activity of the coating were evaluated during 72 h dynamic saline flow testing (1.5-2.5 L/min, n = 3) with scanning electron microscopy imaging and inductively coupled mass-spectroscopy analysis. Compatibility of the coating with whole blood was assessed with a panel of hemocompatibility tests during 6 h circulation of swine donor blood in an ex vivo circulation loop constructed with CuBTTri tubing or unmodified Tygon (1.5 L/min blood flow rate, n = 8/group). Thrombus deposition and catalytic activity of the CuBTTri tubing were assessed following blood exposure. The coating remained stable during 72 h saline flow experiments at clinically relevant flow rates. No adverse effects were observed relative to controls during blood compatibility testing, to include no significant changes in platelet count (p = 0.42), platelet activation indicated by P-selectin expression (p = 0.57), coagulation panel values, or methemoglobin fraction (p = 0.18) over the 6 h circulation period. CuBTTri within the coating generated NO following blood exposure in the presence of biologically relevant concentrations of an NO donor. CuBTTri composite coating was stable and blood compatible in this pilot study and requires further investigation of efficacy using in vivo models conducted with clinically relevant blood flow rates and study duration.


Assuntos
Estruturas Metalorgânicas , Trombose , Animais , Materiais Biocompatíveis , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico , Projetos Piloto , Suínos , Trombose/prevenção & controle
7.
J Spec Oper Med ; 22(1): 64-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35278316

RESUMO

BACKGROUND: We assessed the use of an FDA-cleared transport ventilator with limited functions and settings during ground transport in a swine model of ground evacuation. We hypothesized that when used as an adjunct to extracorporeal life support (ECLS), the device would enable safe mobile ventilatory support during ground evacuation. METHODS: Female Yorkshire swine (n = 11; mean, 52.4 ± 1.3 kg) were sedated and anesthetized and received mechanical ventilation (MV) with a standard intensive care unit (ICU) ventilator and were transitioned to the Simplified Automated Ventilator II (SAVe II; AutoMedx) during ground transport. MV served as an adjunct to ECLS in all animals. Ventilator performance was assessed in the uninjured state on day 1 and after bilateral pulmonary contusion on day 2. Data were collected pre- and post-transport on both days. RESULTS: During 33 transports, the SAVe II provided similar ventilation support as the ICU ventilator. Mean total transport time was 38.8 ± 2.1 minutes. The peak inspiratory pressure (PIP) limit was the only variable to show consistent differences pre- and post-transport and between ventilators. No adverse events occurred. CONCLUSION: As an adjunctive supportive device during ground transport, the SAVe II performed adequately without failure or degradation in subject status. Further testing is warranted to elucidate the clinical limits of this device during standalone use.


Assuntos
Oxigenação por Membrana Extracorpórea , Respiração Artificial , Animais , Cuidados Críticos , Feminino , Humanos , Unidades de Terapia Intensiva , Suínos , Ventiladores Mecânicos
8.
Perfusion ; 37(3): 242-248, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33567967

RESUMO

INTRODUCTION: Extracorporeal life support (ECLS) patients are at risk for complications caused by gaseous microemboli (GME). GMEs can cause hypoxia, inflammation, coagulation, and end-organ damage. The objective of this in vitro study was to assess dynamics of GME formation during circulation of whole blood or a glycerol blood surrogate. We hypothesized that there is no difference in GME counts and sizes between whole blood and the glycerol blood surrogate and that the membrane lung reduces GME counts over time. METHODS: A circulation platform was developed using the Cardiohelp ECLS system to run either donor blood or glycerol solution. We conducted 10 repetitions consisting of three phases of ultrasound GME detection using the EDAC™ Quantifier (Luna Innovations, Charlottesville, VA, USA) for each group. Phases were 3-minute recordings at the initiation of 2 L/min flow (Phase 1), post-injection of a GME suspension (Phase 2), and 10 minutes after injection (Phase 3). The number and size of GME pre- and post-ML were recorded separately and binned based on diameter ranges. RESULTS: In Phase 1, GME count in blood was higher than in glycerol. In Phase 2, there was a large increase in GME counts; however, most GME were reduced post-membrane in both groups. In Phase 3, there was a significant decrease in GME counts compared to Phase 2. GME > 100 µm in glycerol decreased post membrane. CONCLUSIONS: We demonstrated GME formation and decay dynamics during in vitro circulation in an ECLS system with blood and glycerol. GME counts were higher in blood, likely due to varying rheological properties. There were decreases in GME levels post membrane in both groups after GME injection, with the membrane lung effectively trapping the GME, and additional reduction 10 minutes after GME injection.


Assuntos
Embolia Aérea , Circulação Extracorpórea , Oxigenação por Membrana Extracorpórea , Ponte Cardiopulmonar , Embolia Aérea/etiologia , Desenho de Equipamento , Oxigenação por Membrana Extracorpórea/efeitos adversos , Gases , Glicerol , Humanos , Sistemas de Manutenção da Vida
9.
Micromachines (Basel) ; 12(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34442512

RESUMO

The recent emergence of microfluidic extracorporeal lung support technologies presents an opportunity to achieve high gas transfer efficiency and improved hemocompatibility relative to the current standard of care in extracorporeal membrane oxygenation (ECMO). However, a critical challenge in the field is the ability to scale these devices to clinically relevant blood flow rates, in part because the typically very low blood flow in a single layer of a microfluidic oxygenator device requires stacking of a logistically challenging number of layers. We have developed biomimetic microfluidic oxygenators for the past decade and report here on the development of a high-flow (30 mL/min) single-layer prototype, scalable to larger structures via stacking and assembly with blood distribution manifolds. Microfluidic oxygenators were designed with biomimetic in-layer blood distribution manifolds and arrays of parallel transfer channels, and were fabricated using high precision machined durable metal master molds and microreplication with silicone films, resulting in large area gas transfer devices. Oxygen transfer was evaluated by flowing 100% O2 at 100 mL/min and blood at 0-30 mL/min while monitoring increases in O2 partial pressures in the blood. This design resulted in an oxygen saturation increase from 65% to 95% at 20 mL/min and operation up to 30 mL/min in multiple devices, the highest value yet recorded in a single layer microfluidic device. In addition to evaluation of the device for blood oxygenation, a 6-h in vitro hemocompatibility test was conducted on devices (n = 5) at a 25 mL/min blood flow rate with heparinized swine donor blood against control circuits (n = 3). Initial hemocompatibility results indicate that this technology has the potential to benefit future applications in extracorporeal lung support technologies for acute lung injury.

10.
ASAIO J ; 67(7): 798-808, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534236

RESUMO

Coagulopathic complications during extracorporeal life support (ECLS) result from two parallel processes: 1) foreign surface contact and shear stress during blood circulation and 2) administration of anticoagulant drugs to prevent circuit thrombosis. To address these problems, biocompatible surfaces are developed to prevent foreign surface-induced coagulopathy, reducing or eliminating the need for anticoagulants. Tethered liquid perfluorocarbon (TLP) is a nonadhesive coating that prevents adsorption of plasma proteins and thrombus deposition. We examined application of TLP to complete ECLS circuits (membranes, tubing, pumps, and catheters) during 72 hours of ECLS in healthy swine (n = 5/group). We compared TLP-coated circuits used without systemic anticoagulation to standard of care: heparin-coated circuits with continuous heparin infusion. Coagulopathic complications, device performance, and systemic effects were assessed. We hypothesized that TLP reduces circuit thrombosis and iatrogenic bleeding, without impeding gas exchange performance or causing untoward effects. No difference in bleeding or thrombotic complication rate was observed; however, circuit occlusion occurred in both groups (TLP = 2/5; CTRL = 1/5). TLP required elevated sweep gas rate to maintain normocapnia during ECLS versus CTRL (10-20 vs. 5 L/min; p = 0.047), suggesting impaired gas exchange. Thrombus deposition and protein adhesion on explanted membranes were comparable, and TLP did not preserve platelet or blood cell counts relative to controls. We conclude that neither TLP nor standard of care is an efficacious solution to prevent coagulation disturbances during ECLS. Further testing of promising biomaterials for ECLS utilizing the model outlined here is warranted.


Assuntos
Oxigenação por Membrana Extracorpórea , Animais , Anticoagulantes/efeitos adversos , Coagulação Sanguínea/efeitos dos fármacos , Circulação Extracorpórea , Oxigenação por Membrana Extracorpórea/efeitos adversos , Fluorocarbonos/farmacologia , Heparina/farmacologia , Suínos
11.
J Spec Oper Med ; 20(1): 65-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32203609

RESUMO

BACKGROUND: We investigated the expression of high mobility group box 1 (HMGB1) protein in a combat-relevant polytrauma/ acute respiratory distress syndrome (ARDS) model. We hypothesized that systemic HMGB1 expression is increased after injury and during aeromedical evacuation (AE) at altitude. METHODS: Female Yorkshire swine (n =15) were anesthetized and cannulated with a 23Fr dual-lumen catheter. Venovenous extracorporeal life support (VV ECLS) was initiated via the right jugular vein and carried out with animals uninjured on day 1 and injured by bilateral pulmonary contusion on day 2. On both days, animals underwent transport and simulated AE. Systemic HMGB1 expression was measured in plasma by ELISA. Plasma-free Hb (pfHb) was measured with the use of spectrophotometric methods. RESULTS: Plasma HMGB1 on day 1 was transiently higher at arrival to the AE chambers, increased significantly after injury, reaching highest values at 8,000 ft on day 2, after which levels decreased but remained elevated versus baseline at each time point. pfHb decreased on day 1 at 30,000 ft and significantly increased on day 2 at 8,000 ft and postflight. CONCLUSIONS: Systemic HMGB1 demonstrated sustained elevation after trauma and altitude transport and may provide a useful monitoring capability during en route care.


Assuntos
Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Traumatismo Múltiplo/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Transporte de Pacientes/métodos , Lesões Relacionadas à Guerra/metabolismo , Altitude , Animais , Feminino , Suínos
12.
ASAIO J ; 66(7): 809-817, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31453831

RESUMO

Coagulation management is the leading challenge during extracorporeal life support (ECLS) due to shear stress and foreign-surface-induced coagulation disturbance during circulation. A nonadhesive, liquid-infused coating called tethered liquid perfluorocarbon (TLP) was developed to prevent adhesion of blood on medical materials. We investigated the novel application of TLP to commercial ECLS circuits compared with standard heparin-coated circuits in vivo in anesthetized swine for 6 hours veno-venous ECLS (1 L/min blood flow) without systemic anticoagulation (n = 3/group). We hypothesized that TLP coating permits heparin-free circulation without untoward effects while reducing thrombus deposition compared with controls. Vital signs, respiration, gas transfer, coagulation, and histology were assessed. Scanning electron microscopy (SEM), elemental mapping, and digital imaging were used to assess thrombus deposition after circulation. There were no group differences in vitals, gas exchange, coagulation, and histology. In both groups, ECLS enabled a decrease in minute volume and end-tidal CO2, with concomitant increase in pH (p < 0.05). Scanning electron microscopy and digital imaging revealed significant thrombus on heparin-coated membranes, which was reduced or absent on TLP-coated materials. Tethered liquid perfluorocarbon permitted heparin-free ECLS without altering device performance and prevented thrombus deposition versus immobilized heparin. Pending multiday in vivo testing, TLP is a promising biomaterial solution to eliminate anticoagulation requirements during ECLS.


Assuntos
Anticoagulantes/farmacologia , Cateteres de Demora , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/instrumentação , Fluorocarbonos/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Oxigenação por Membrana Extracorpórea/métodos , Estudos de Viabilidade , Hemodinâmica/efeitos dos fármacos , Suínos , Trombose/etiologia , Trombose/prevenção & controle
13.
J Trauma Acute Care Surg ; 87(1S Suppl 1): S119-S127, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31246915

RESUMO

BACKGROUND: Coagulation monitoring capabilities during transport are limited. Thromboelastography (TEG) is a whole-blood clotting test measuring clot formation, stabilization, and fibrinolysis and is traditionally performed in a laboratory. We evaluated a new point-of-care TEG analyzer, TEG 6s (Haemonetics, Braintree, MA), in a large animal model of combat-relevant trauma managed with extracorporeal life support during ground and high-altitude aeromedical evacuation. The objective was to compare TEG 6s used during transport versus the predicate device, TEG 5000, used in the laboratory. We hypothesized that TEG 6s would be comparable with TEG 5000 during dynamically changing transport conditions. METHODS: Thromboelastography parameters (R, K, angle, MA, LY30) derived by TEG 6s and TEG 5000 were compared during transport of 8 swine. TEG 6s was transported with animals during ground transport and flight. TEG 5000 was stationary in an adjacent building. TEG 6s activated clotting time (ACT) was compared with a Hemochron Junior ACT analyzer (Accriva Diagnostics, San Diego, CA). Statistics were performed using SAS 9.4 with Deming regressions, Spearman correlations, and average differences compared. RESULTS: Correlation between devices was stronger at sea-level (R, r = 0.7413; K, r = 0.7115; angle, r = 0.7192; MA, r = 0.8386; LY30, r = 0.9099) than during high-altitude transport (R, r = 0.4787; K, r = 0.4007; angle, r = 0.3706; MA, r = 0.6573; LY30, r = 0.8481). Method agreement was comparable during stationary operation (R, r = 0.7978; K, r = 0.7974; angle, r = 0.7574; MA, r = 0.7841; LY30, r = 0.9140) versus ground transport (R, r = 0.7927; K, r = 0.6246; angle, r = 0.6967; MA, r = 0.9163; LY30, r = 0.8603). TEG 6s ACT trended higher than Hemochron ACT when subjects were heparinized (average difference, 1,442 ± 1,703 seconds) without a methodological difference by Deming regression. CONCLUSION: Mobile TEG 6s during ground and altitude transport is feasible and provides unprecedented information to guide coagulation management. Future studies should assess the precision and accuracy of TEG 6s during transport of critically ill.


Assuntos
Oxigenação por Membrana Extracorpórea , Sistemas Automatizados de Assistência Junto ao Leito , Tromboelastografia/instrumentação , Resgate Aéreo , Altitude , Animais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA