Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25233, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327393

RESUMO

Chlorpyrifos (CPS), an organophosphorus insecticide, is widely used for agricultural and non-agricultural purposes with hazardous health effects. Berberine (BBR) is a traditional Chinese medicine and a phytochemical with anti-inflammatory and anti-oxidative properties. The present study evaluated the effects of BBR against kidney damage induced by CPS and the underlying mechanisms. An initial study indicated that BBR 50 mg/kg was optimal under our experimental conditions. Then, 24 rats (6/group) were randomized into: control, BBR (50 mg/kg/day), CPS (10 mg/kg/day), and CPS + BBR. BBR was administration 1 h prior to CPS. Each treatment was delivered daily for a period of 28 consecutive days using a gastric gavage tube. Compared to CPS-alone treated rats, BBR effectively improved renal function by preventing the rise in serum urea, creatinine, and uric levels. The reno-protective effects of BBR were confirmed through a histological examination of kidney tissues. BBR restored oxidant-antioxidant balance in renal tissues mediated by Keap1/Nrf2/HO-1 axis modulation. In addition, BBR decreased nitric oxide (NO) and myeloperoxidase (MPO) activity. This was paralleled with the potent down-regulation of NF-κB. Furthermore, BBR exhibited anti-apoptotic activities supported by the upregulation of Bcl-2 and down-regulation of Bax and caspase-3 expression. In conclusion, our data suggest that BBR attenuates CPS-induced nephrotoxicity in rats by restoring oxidant-antioxidant balance and inhibiting inflammatory response and apoptosis in renal tissue. This is mediated, at least partly, by modulation of the Nrf2/HO-1 axis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38090280

RESUMO

Background: Breast cancer is a leading cause of death and one of the most common fatal medical conditions in the world. Chemical compounds of various types have been identified in the Red Sea marine sponge Xestospongia testudinaria, including sterol esters, sterols, indole alkaloids, and brominated polyunsaturated fatty acids. These compounds have demonstrated promising biological features, which in cludes anti-inflammatory, cancer preventive, and antioxidant capacities. Methods: The cytotoxic potential of Xestospongia testudinaria was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological alterations in MCF-7 cell line. Furthermore, the flow cytometry was also utilized to assess apoptosis and identify changes in the cell cycle; besides, cell migration was assessed by scratch wound-healing assay. Results: A significant dose-dependent decrease in the percentage of MCF-7 cell viability was observed with IC50 39.8 ug/mL. Functional studies were performed on MCF-7 to show that Xestospongia testudinaria raises apoptotic cell death and induces growth arrest at the G1/G0 while inhibiting cell migration in scratch assay. Conclusion: These results demonstrated that Xestospongia testudinaria extract has an inhibitory effect on breast cancer cells proliferation, migration and induce apoptosis. Thus, it holds great promise as a potential treatment for breast cancer.

3.
J Appl Biomed ; 21(3): 160-165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747315

RESUMO

The single nucleotide polymorphism (SNP) A118G (rs1799971) in the Mu Opioid Receptor 1 (OPRM1) gene is associated with significant variations in analgesic doses and adverse effects of opioids. The A118G OPRM1 allele distributions vary significantly between different populations worldwide. The study aimed to assess the allele frequency and genotype distribution of OPRM1 A118G SNP in Saudis. This cross-sectional study included 124 healthy Saudis (62 males and 62 females) visiting the King Abdulaziz University Hospital in Jeddah, Saudi Arabia. The Oragene®-DISCOVER (OGR-600) kits were used to collect saliva samples from the participants. Polymerase chain reaction-restriction fragment length polymorphism was utilized to assess the SNP. Among the tested population, 79.03% (95% C.I. 70.81-85.82) were homozygous wild-type A118A, 16.13% (95% C.I. 10.14-23.80) were heterozygous A118G, and 4.84% (95% C.I. 1.80-10.23) were homozygous mutant G118G. OPRM1 A118G polymorphism allele frequencies were 87% (95% C.I. 79.89-92.44) and 13% (95% C.I. 7.56-20.11) for the 118A and 118G alleles, respectively. A higher frequency of the OPRM1 118G allele was present in females, 21% (95% C.I. 11.66-33.17) compared to males, 5% (95% C.I. 1.01-13.50). Relative to other Asian countries, the Saudi population showed a low prevalence of the OPRM1 A118G polymorphism, with a higher frequency of the 118G allele in females. Our research will contribute to the existing knowledge on the prevalence of OPRM1 A118G polymorphism, which could be considered for the personalized prescribing of opioid analgesics.


Assuntos
Analgésicos Opioides , Polimorfismo de Nucleotídeo Único , Feminino , Masculino , Humanos , Estudos Transversais , Arábia Saudita/epidemiologia , Frequência do Gene , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Receptores Opioides , Receptores Opioides mu/genética
4.
Saudi Pharm J ; 31(10): 101787, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37766820

RESUMO

Myocardial injury (MI) is an important pathological driver of mortality worldwide., and arises as a result of imbalances between myocardial oxygen demand and supply. In MI, oxidative stress often leads to inflammatory changes and apoptosis. Current therapies for MI are known to cause various adverse effects. Consequently, the development of new therapeutic agents with a reduced adverse event profile is necessary. In this regard, 2-methoxyestradiol (2ME), the metabolic end-product of oestradiol, possesses anti-inflammatory and antioxidant properties. The aim of this research is to assess the impact of 2ME on cardiac injury caused by isoproterenol (ISO) in rats. Animals were separated into six groups; controls, and those receiving 2ME (1 mg/kg), ISO (85 mg/kg), ISO + 2ME (0.25 mg/kg), ISO + 2ME (0.5 mg/kg), and ISO + 2ME (1 mg/kg). 2ME significantly attenuated ISO-induced changes in electrocardiographic changes and the cardiac histological pattern. This compound also decreased lactate dehydrogenase activity, creatine kinase myocardial band and troponin levels. The ability of 2ME to act as an antioxidant was shown by a decrease in malondialdehyde concentration, and the restoration of glutathione levels and superoxide dismutase activity. Additionally, 2ME antagonized inflammation and cardiac cell apoptosis, a process determined to be mediated, at least partially, by suppression of Gal-3/TLR4/MyD88/NF-κB signaling pathway. 2ME offers protection against acute ISO-induced MI in rats and offers a novel therapeutic management option.

5.
Ecotoxicol Environ Saf ; 262: 115122, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329850

RESUMO

Chlorpyrifos (CPF), is an organophosphate pesticide that is widely used for agricultural purposes. However, it has well-documented hepatotoxicity. Lycopene (LCP) is a plant-derived carotenoid with antioxidant and anti-inflammatory activities. The present work was designed to evaluate the potential hepatoprotective actions of LCP against CPF-induced hepatotoxicity in rats. Animals were assigned into five groups namely: Group I (Control), Group II (LCP), Group III (CPF), Group IV (CPF + LCP 5 mg/kg), and Group V (CPF + LCP 10 mg/kg). LCP offered protection as evidenced by inhibiting the rise in serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) induced by CPF. This was confirmed histologically as LCP-treated animals showed liver tissues with less proliferation of bile ducts and periductal fibrosis. LCP significantly prevented the rise in hepatic content of malondialdehyde (MDA), depletion of reduced glutathione (GSH), and exhaustion of glutathione-s-transferase (GST) and superoxide dismutase (SOD). Further, LCP significantly prevented hepatocyte death as it ameliorated the increase in Bax and the decrease in Bcl-2 expression induced by CPF in liver tissues as determined immunohistochemically. The observed protective effects of LCP were further confirmed by a significant enhancement in heme oxygenase-1 (HO-1) and NF-E2-related factor 2 (Nrf2) expression. In conclusion, LCP possesses protective effects against CPF-induced hepatotoxicity. These include antioxidation and activation of the Nrf2/HO-1 axis.

6.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985711

RESUMO

Nephrotoxicity is a serious complication that limits the clinical use of gentamicin (GEN). Parthenolide (PTL) is a sesquiterpene lactone derived from feverfew with various therapeutic benefits. However, PTL possesses low oral bioavailability. This study aimed to evaluate the therapeutic protective effects of PTL-phytosomes against GEN-induced nephrotoxicity in rats. The PTL was prepared as phytosomes to improve the pharmacological properties with a particle size of 407.4 nm, and surface morphology showed oval particles with multiple edges. Rats were divided into six groups: control, nano-formulation plain vehicle, PTL-phytosomes (10 mg/kg), GEN (100 mg/kg), GEN + PTL-phytosomes (5 mg/kg), and GEN + PTL-phytosomes (10 mg/kg). The administration of PTL-phytosomes alleviated GEN-induced impairment in kidney functions and histopathological damage, and decreased kidney injury molecule-1 (KIM-1). The anti-oxidative effect of PTL-phytosomes was demonstrated by the reduced malondialdehyde (MDA) concentration and increased superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, PTL-phytosomes treatment significantly enhanced sirtuin 1 (Sirt-1), nuclear factor erythroid-2-related factor-2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1). Additionally, PTL-phytosomes treatment exhibited anti-inflammatory and anti-apoptotic properties in the kidney tissue. These findings suggest that PTL-phytosomes attenuate renal dysfunction and structural damage by reducing oxidative stress, inflammation, and apoptosis in the kidney.


Assuntos
Gentamicinas , Sesquiterpenos , Ratos , Animais , Gentamicinas/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Fitossomas , Sirtuína 1/metabolismo , Rim , Antioxidantes/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Estresse Oxidativo , NAD(P)H Desidrogenase (Quinona)/metabolismo
7.
Pharmaceutics ; 14(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36559120

RESUMO

Flibanserin was licensed by the United States Food and Drug Administration (FDA) as an oral non-hormonal therapy for pre-menopausal women with inhibited sexual desire disorder. However, it suffers from susceptibility to first-pass metabolism in the liver, low aqueous solubility, and degradation in the acidic stomach environment. Such hurdles result in a limited oral bioavailability of 33%. Thus, the aim of the study was to utilize the principles of nanotechnology and the benefits of an intranasal route of administration to develop a formulation that could bypass these drawbacks. A response-surface randomized D-optimal strategy was used for the formulation of flibanserin spanlastics (SPLs) with reduced size and increased absolute zeta potential. Two numerical factors were studied, namely the Span 60: edge activator ratio (w/w) and sonication time (min), in addition to one categorical factor that deals with the type of edge activator. Particle size (nm) and zeta potential (mV) were studied as responses. A mathematical optimization method was implemented for predicting the optimized levels of the variables. The optimized formulation was prepared using a Span: sodium deoxycholate ratio of 8:2 w/w; a sonication time of 5 min showed particle sizes of 129.70 nm and a zeta potential of -33.17 mV. Further in vivo assessment following intranasal administration in rats showed boosted plasma and brain levels, with 2.11- and 2.23-fold increases (respectively) compared to raw FLB. The aforementioned results imply that the proposed spanlastics could be regarded as efficient drug carriers for the trans-nasal delivery of drugs to the brain.

8.
Metabolites ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36355114

RESUMO

Euclea divinorum Hiern is a medicinal plant widely distributed in the northeast parts of South Africa. This plant has been used to treat miscarriage and to alleviate gastrointestinal problems. It can also be used externally for the treatment of ulcers and gonorrhea. In this study, we investigated the phytochemical composition of E. divinorum leaf extract using LC-MS and explored its antioxidant properties in vitro and in vivo. The total polyphenolic content of the extract was determined by the Folin-Ciocalteu method. DPPH and FRAP assays were employed to confirm the plant's antioxidant potential in vitro. A survival assay in the Caenorhabditis elegans model was used to evaluate the extract's ability to counteract juglone-induced oxidative stress. Moreover, a docking study was performed for the extract's metabolites, in order to predict possible molecular targets that could explain the antioxidant effect of the plant on a molecular level. This in silico approach was accomplished on three different proteins; xanthine oxidase enzyme, heat shock protein 90 (Hsp90), and induced nitric oxide synthase (iNOS). Docking scores of the resulting poses and their interactions with binding sites' residues were explored for each protein and were compared to those of simultaneously docked respective co-crystallized and reference substrates. The extract furnished promising antioxidant activities in vitro and in vivo in the C. elegans model that might be attributed to the presence of 46 compounds, which showed several interactions and low binding scores with the tested enzymes. In conclusion, E. divinorum is a promising, safe, and effective antioxidant candidate that could be used to ameliorate oxidative stress-related disorders.

9.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235247

RESUMO

In this study, a series of coumarin derivatives, either alone or as hybrids with cinnamic acid, were synthesized and evaluated for their cytotoxicity against a panel of cancer cells using the MTT assay. Then, the most active compounds were inspected for their mechanism of cytotoxicity by cell-cycle analysis, RT-PCR, DNA fragmentation, and Western blotting techniques. Cytotoxic results showed that compound (4) had a significant cytotoxic effect against HL60 cells (IC50 = 8.09 µM), while compound (8b) had a noticeable activity against HepG2 cells (IC50 = 13.14 µM). Compounds (4) and (8b) mediated their cytotoxicity via PI3K/AKT pathway inhibition. These results were assured by molecular docking studies. These results support further exploratory research focusing on the therapeutic activity of coumarin derivatives as cytotoxic agents.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Apoptose , Cumarínicos/farmacologia , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
10.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235292

RESUMO

Fungus continues to attract great attention as a promising pool of biometabolites. Aspergillus ochraceus Wilh (Aspergillaceae) has established its capacity to biosynthesize a myriad of metabolites belonging to different chemical classes, such as isocoumarins, pyrazines, sterols, indole alkaloids, diketopiperazines, polyketides, peptides, quinones, polyketides, and sesquiterpenoids, revealing various bioactivities that are antimicrobial, cytotoxic, antiviral, anti-inflammatory, insecticidal, and neuroprotective. Additionally, A. ochraceus produces a variety of enzymes that could have variable industrial and biotechnological applications. From 1965 until June 2022, 165 metabolites were reported from A. ochraceus isolated from different sources. In this review, the formerly separated metabolites from A. ochraceus, including their bioactivities and biosynthesis, in addition, the industrial and biotechnological potential of A. ochraceus are highlighted.


Assuntos
Anti-Infecciosos , Policetídeos , Anti-Infecciosos/metabolismo , Anti-Inflamatórios/metabolismo , Antivirais , Aspergillus ochraceus , Dicetopiperazinas/metabolismo , Alcaloides Indólicos/metabolismo , Isocumarinas/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Pirazinas/metabolismo , Quinonas/metabolismo , Esteróis/metabolismo
11.
Metabolites ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295823

RESUMO

Phragmanthera austroarabica (Loranthaceae), a semi-parasitic plant, is well known for its high content of polyphenols that are responsible for its antioxidant and anti-inflammatory activities. Gallic acid, catechin, and methyl gallate are bioactive metabolites of common occurrence in the family of Loranthaceae. Herein, the concentrations of these bioactive metabolites were assessed using high-performance thin layer chromatography (HPTLC). Methyl gallate, catechin, and gallic acid were scanned at 280 nm. Their concentrations were assessed as 14.5, 6.5 and 43.6 mg/g of plant dry extract, respectively. Phragmanthera austroarabica extract as well as the three pure compounds were evaluated regarding the cytotoxic activity. The plant extract exhibited promising cytotoxic activity against MDA-MB-231 breast cells with the IC50 value of 19.8 µg/mL while the tested pure compounds displayed IC50 values in the range of 21.26-29.6 µg/mL. For apoptosis investigation, P. austroarabica induced apoptotic cell death by 111-fold change and necrosis by 9.31-fold change. It also activated the proapoptotic genes markers and inhibited the antiapoptotic gene, validating the apoptosis mechanism. Moreover, in vivo studies revealed a significant reduction in the breast tumor volume and weight in solid Ehrlich carcinoma (SEC) mice. The treatment of SEC mice with P. austroarabica extract improved both hematological and biochemical parameters with amelioration in the liver and kidney histopathology to near normal. Taken together, P. austroarabica extract exhibited promising anti-cancer activity through an apoptosis-induction.

12.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297358

RESUMO

Breast cancer is a disease in which cells in the breast divide continuously without control. There are great limitations in cancer chemotherapy. Hence, it is essential to search for new cancer therapeutics. Herein, a novel series of EGFR/HER2 dual inhibitors has been designed based on the hybridization of thiazole and pyrazoline fragments. The synthesized compounds were screened for their anti-proliferative activity against MCF-7 breast cancer cell line and MCF-10 normal breast cell line. Interestingly, synthesized compounds 6e and 6k showed very potent antiproliferative activity towards MCF-7 with IC50 values of 7.21 and 8.02 µM, respectively. Furthermore, enzymatic assay was performed against EGFR and HER2 to prove the dual inhibitory action. Compounds 6e and 6k showed potent inhibitory activity for EGFR with IC50 of 0.009 and 0.051 µM, respectively, and for HER2 with IC50 of 0.013 and 0.027 µM, respectively. Additionally, compounds 6e and 6k significantly stimulated apoptotic breast cancer cell death. Compound 6e was further explored for its anticancer activity in vivo using a Xenograft model. Moreover, computational modeling studies, ADMET studies and toxicity prediction were performed to investigate their potential drug candidates.

13.
Life (Basel) ; 12(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36295014

RESUMO

Teucrium polium L. is commonly used in folk medicine to treat hypertension and diabetes and to heal wounds. The present work aimed to evaluate the different biological activities of T. polium hydroalcoholic extract, its total phenol and flavonoid content, and its mineral elements. Results showed that T. polium extract showed significant antioxidant potential in 2-diphenyl-1-picrylhydrazyl (DPPH) assay with IC50 equal to 8.68 µg/mL but with moderate activity in galvinoxyl assay with IC50 of 21.82 µg/mL and mild activity in the ß-carotene assay. It also showed a pronounced anti-hyperglycemic activity using α-amylase inhibitory assay (IC50 = 111.68 µg/mL) and exceeds that of acarbose. T. polium showed excellent activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 28.69 and 4.93 µg/mL, respectively, postulating its promising anti-Alzheimer potential. The plant extract exhibited a strong anti-inflammatory effect with Bovine Serum Albumin (BSA) denaturation inhibitory potential estimated by 97.53% at 2 mg/mL, which was further confirmed by the in vivo carrageen-induced edema model. The extract revealed its richness in flavonoids and phenols, evidenced by its polyphenols content (36.35 ± 0.294 µg GAE/mg) and flavonoids (24.30 ± 0.44 µg QE/mg). It is rich in minerals necessary for human health, such as calcium, potassium, iron, sodium, magnesium, manganese and zinc. Molecular docking performed for previously identified compounds on human α-amylase, 5-lipoxygenase (5-LOX) and acetylcholine esterase confirmed the results. Thus, it can be concluded that T. polium can be a good candidate for alleviating many health-debilitating problems and can be highly beneficial in the pharmaceutical industry and medical research.

14.
Plants (Basel) ; 11(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36079691

RESUMO

Despite the efficient anti-cancer capabilities of methotrexate (MTX), it may induce myelosuppression, liver dysfunction and testicular toxicity. The purpose of this investigation was to determine whether Marrubium alysson L. (M. alysson L.) methanolic extract and its polyphenol fraction could protect mouse testicles from MTX-induced damage. We also investigated the protective effects of three selected pure flavonoid components of M. alysson L. extract. Mice were divided into seven groups (n = 8): (1) normal control, (2) MTX, (3) Methanolic extract + MTX, (4) Polyphenolic fraction + MTX, (5) Kaempferol + MTX, (6) Quercetin + MTX, and (7) Rutin + MTX. Pre-treatment of mice with the methanolic extract, the polyphenolic fraction of M. alysson L. and the selected pure compounds ameliorated the testicular histopathological damage and induced a significant increase in the serum testosterone level and testicular antioxidant enzymes along with a remarkable decline in the malondialdehyde (MDA) level versus MTX alone. Significant down-regulation of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), p53 and miRNA-29a testicular expression was also observed in all the protected groups. Notably, the polyphenolic fraction of M. alysson L. displayed a more pronounced decline in the testicular levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and MDA, with higher testosterone levels relative to the methanolic extract. Further improvements in the Johnsen score, histopathological results and all biochemical assays were achieved by pre-treatment with the three selected pure compounds kaempferol, quercetin and rutin. In conclusion, M. alysson L. could protect against MTX-induced testicular injury by its antioxidant, anti-inflammatory, antiapoptotic activities and through the regulation of the miRNA-29a testicular expression. The present study also included chemical profiling of M. alysson L. extract, which was accomplished by LC-ESI-TOF-MS/MS analysis. Forty compounds were provisionally assigned, comprising twenty compounds discovered in the positive mode and seventeen detected in the negative mode.

15.
Life (Basel) ; 12(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36143486

RESUMO

Saussurea hypoleuca belongs to the family Asteraceae, which has previously shown hepatoprotective, anticancer, and antioxidant activity. This study aimed to evaluate the antihyperglycemic and antihyperlipidemic activity of its root methanol extract and various fractions for the first time. This was performed using alloxan-induced diabetes in the rat model for both short, and long-term periods using different administration doses. Different biochemical parameters were studied and further consolidated by histopathological examination and in silico molecular modeling. The results showed that in the long-term study, at a dose of 400 mg/kg b.wt, the ethyl acetate fraction caused a pronounced reduction in fasting blood glucose level (FBG) and glycated hemoglobin (HbA1c) by 77.2% and 36.8%, respectively, compared to the diabetic group. This was confirmed by the histopathological examination of the animals' pancreatic sections. The ethyl acetate fraction also showed a reduction in total cholesterol (TC), total glycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels. It improved kidney and liver functions, causing a reduction in aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine transaminase (ALT), urea, and creatinine levels. This is mainly attributed to its richness in secondary metabolites. Molecular docking showed that all the tested compounds showed certain inhibitory potential towards human α-glucosidase (HAG) and ATP citrate lyase (ACL). Thus, Saussurea hypoleuca roots can help in the management of hyperglycemia, hyperlipidemia, and hepatic and kidney dysfunction.

16.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144705

RESUMO

Marine sponges continue to attract remarkable attention as one of the richest pools of bioactive metabolites in the marine environment. The genus Smenospongia (order Dictyoceratida, family Thorectidae) sponges can produce diverse classes of metabolites with unique and unusual chemical skeletons, including terpenoids (sesqui-, di-, and sesterterpenoids), indole alkaloids, aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, naphthoquinones, and polyketides that possessed diversified bioactivities. This review provided an overview of the reported metabolites from Smenospongia sponges, including their biosynthesis, synthesis, and bioactivities in the period from 1980 to June 2022. The structural characteristics and diverse bioactivities of these metabolites could attract a great deal of attention from natural-product chemists and pharmaceuticals seeking to develop these metabolites into medicine for the treatment and prevention of certain health concerns.


Assuntos
Produtos Biológicos , Naftoquinonas , Policetídeos , Poríferos , Alcenos/metabolismo , Animais , Benzopiranos/metabolismo , Produtos Biológicos/química , Alcaloides Indólicos/química , Naftoquinonas/metabolismo , Preparações Farmacêuticas/metabolismo , Policetídeos/metabolismo , Poríferos/química , Pironas/metabolismo , Terpenos/metabolismo , Terpenos/farmacologia
17.
Antioxidants (Basel) ; 11(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35883740

RESUMO

This study presents a comparison between two mistletoe plants-P. acacia and P. curviflorus-regarding their total phenolic contents and antioxidant and anticancer activities. P. curviflorus exhibited a higher total phenolics content (340.62 ± 19.46 mg GAE/g extract), and demonstrated higher DPPH free radical scavenging activity (IC50 = 48.28 ± 3.41µg/mL), stronger reducing power (1.43 ± 0.54 mMol Fe+2/g) for ferric ions, and a greater total antioxidant capacity (41.89 ± 3.15 mg GAE/g) compared to P. acacia. The cytotoxic effects of P. acacia and P. curviflorus methanol extracts were examined on lung (A549), prostate (PC-3), ovarian (A2780) and breast (MDA-MB-231) cancer cells. The highest anticancer potential for the two extracts was observed on PC-3 prostate cancer cells, where P. curviflorus exhibited more pronounced antiproliferative activity (IC50 = 25.83 µg/mL) than P. acacia (IC50 = 34.12 µg/mL). In addition, both of the tested extracts arrested the cell cycle at the Pre-G1 and G1 phases, and induced apoptosis. However, P. curviflorus extract possessed the highest apoptotic effect, mediated by the upregulation of p53, Bax, and caspase-3, 8 and 9, and the downregulation of Bcl-2 expression. In the pursuit to link the chemical diversity of P. curviflorus with the exhibited bioactivities, its metabolomic profiling was achieved by the LC-ESI-TOF-MS/MS technique. This permitted the tentative identification of several phenolics-chiefly flavonoid derivatives, beside some triterpenes and sterols-in the P. curviflorus extract. Furthermore, all of the metabolites in P. curviflorus and P. acacia were inspected for their binding modes towards both CDK-2 and EGFR proteins using molecular docking studies in an attempt to understand the superiority of P. curviflorus over P. acacia regarding their antiproliferative effect on PC-3 cancer cells. Docking studies supported our experimental results; with all of this taken together, P. curviflorus could be regarded as a potential prospect for the development of chemotherapeutics for prostate cancer.

18.
Plants (Basel) ; 11(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35736748

RESUMO

Carpesium abrotanoides L. (Asteraceae) is a medicinal plant with immense therapeutic importance and bioactivities. It is commonly encountered in various Asian regions. It has numerous ethnomedicinal uses for curing diverse ailments such as toothache, stomach ulcer, boils, tonsillitis, bronchitis, bacterial infection, bruises, swelling, virus infection, fever, and amygdalitis, as well as an anthelmintic versus round-, tape-, hook-, and pinworms. Different classes of phytoconstituents such as sesquiterpenes, sesquiterpene dimers, monoterpenes, and nitrogenous compounds have been reported from this plant. These phytoconstituents have proved to possess anti-inflammatory, cytotoxic, antimicrobial, and insecticidal capacities. The present review aims to summarize all published data on C. abrotanoides including traditional uses, phytoconstituents, bioactivities, and toxicological aspects, as well as the synthesis and biosynthesis of its metabolites through an extensive survey on various databases and various publishers. These reported data could draw the attention of various natural-metabolite-interested researchers and medicinal chemists towards the development of this plant and/or its metabolites into medicine for the prevention and treatment of certain illnesses. Despite the diverse traditional uses of C. abrotanoides, there is a need for scientific evidence to support these claims. Clinical trials are also required to further assure these data and validate this plant utilization in treating several diseases.

19.
Mar Drugs ; 20(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35447894

RESUMO

Marine environment has been identified as a huge reservoir of novel biometabolites that are beneficial for medical treatments, as well as improving human health and well-being. Sponges have been highlighted as one of the most interesting phyla as new metabolites producers. Dactylospongia elegans Thiele (Thorectidae) is a wealth pool of various classes of sesquiterpenes, including hydroquinones, quinones, and tetronic acid derivatives. These metabolites possessed a wide array of potent bioactivities such as antitumor, cytotoxicity, antibacterial, and anti-inflammatory. In the current work, the reported metabolites from D. elegans have been reviewed, including their bioactivities, biosynthesis, and synthesis, as well as the structural-activity relationship studies. Reviewing the reported studies revealed that these metabolites could contribute to new drug discovery, however, further mechanistic and in vivo studies of these metabolites are needed.


Assuntos
Poríferos , Sesquiterpenos , Animais , Antibacterianos/farmacologia , Humanos , Hidroquinonas , Quinonas/farmacologia , Sesquiterpenos/farmacologia
20.
Plants (Basel) ; 11(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336596

RESUMO

The genus Salsola L. (Russian thistle, Saltwort) includes halophyte plants and is considered one of the largest genera in the family Amaranthaceae. The genus involves annual semi-dwarf to dwarf shrubs and woody tree. The genus Salsola is frequently overlooked, and few people are aware of its significance. The majority of studies focus on pollen morphology and species identification. Salsola has had little research on its phytochemical makeup or biological effects. Therefore, we present this review to cover all aspects of genus Salsola, including taxonomy, distribution, differences in the chemical constituents and representative examples of isolated compounds produced by various species of genus Salsola and in relation to their several reported biological activities for use in folk medicine worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA