RESUMO
HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid. Recent studies have shown that HIV-1 cores enter the nucleus prior to capsid disassembly. Interactions of the viral capsid with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Adaptation of two of the mutant viruses in cell culture resulted in additional substitutions that restored elasticity and rescued infectivity and nuclear entry. We also show that capsid-targeting compound PF74 and the antiviral drug Lenacapavir reduce core elasticity and block HIV-1 nuclear entry at concentrations that preserve interactions between the viral core and the nuclear envelope. Our results indicate that elasticity is a fundamental property of the HIV-1 core that enables nuclear entry, thereby facilitating infection. These results provide new insights into the role of the capsid in HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.
Assuntos
Elasticidade , Infecções por HIV , HIV-1 , HIV-1/fisiologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Internalização do Vírus , Capsídeo/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Simulação de Dinâmica Molecular , Microscopia de Força Atômica , Poro Nuclear/metabolismo , Indóis , Fenilalanina/análogos & derivadosRESUMO
HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid 1,2 . Recent studies have shown that HIV- 1 cores enter the nucleus prior to capsid disassembly 3-5 . Interactions with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Suppressors of the mutants restored elasticity and rescued infectivity and nuclear entry. Elasticity was also reduced by treatment of cores with the capsid-targeting compound PF74 and the antiviral drug lenacapavir. Our results indicate that capsid elasticity is a fundamental property of the HIV-1 core that enables its passage through the nuclear pore complex, thereby facilitating infection. These results provide new insights into the mechanisms of HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.
RESUMO
Mitochondrial Ca2+ efflux by NCLX is a critical rate-limiting step in mitochondria signaling. We previously showed that NCLX is phosphorylated at a putative Casein Kinase 2 (CKII) site, the serine 271 (S271). Here, we asked if NCLX is regulated by CKII and interrogated the physiological implications of this control. We found that CKII inhibitors down-regulated NCLX-dependent Ca2+ transport activity in SH-SY5Y neuronal cells and primary hippocampal neurons. Furthermore, we show that the CKII phosphomimetic mutants on NCLX inhibited (S271A) and constitutively activated (S271D) NCLX transport, respectively, rendering it insensitive to CKII inhibition. These phosphomimetic NCLX mutations also control the allosteric regulation of NCLX by mitochondrial membrane potential (ΔΨm). Since the omnipresent CKII is necessary for modulating the plasticity of the axon initial segment (AIS), we interrogated, in hippocampal neurons, if NCLX is required for this process. Similarly to WT neurons, NCLX-KO neurons can exhibit homeostatic plasticity following M-channel block. However, while WT neurons utilize a CKII-sensitive distal relocation of AIS Na+ and Kv7 channels to decrease their intrinsic excitability, we did not observe such translocation in NCLX-KO neurons. Thus, our results indicate that NCLX is regulated by CKII and is a crucial link between CKII signaling and fast neuronal plasticity.
Assuntos
Segmento Inicial do Axônio , Caseína Quinase II , Mitocôndrias , Plasticidade Neuronal , Humanos , Segmento Inicial do Axônio/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Homeostase , Mitocôndrias/metabolismo , Neuroblastoma , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologiaRESUMO
The assembly and budding of newly formed human immunodeficiency virus-1 (HIV-1) particles occur at the plasma membrane of infected cells. Although the molecular basis for viral budding has been studied extensively, investigation of its spatiotemporal characteristics has been limited by the small dimensions (â¼100 nm) of HIV particles and the fast kinetics of the process (a few minutes from bud formation to virion release). Here we applied ultra-fast atomic force microscopy to achieve real-time visualization of individual HIV-1 budding events from wild-type (WT) cell lines as well as from mutated lines lacking vacuolar protein sorting-4 (VPS4) or visceral adipose tissue-1 protein (VTA1). Using single-particle analysis, we show that HIV-1 bud formation follows two kinetic pathways (fast and slow) with each composed of three distinct phases (growth, stationary, decay). Notably, approximately 38% of events did not result in viral release and were characterized by the formation of short (rather than tall) particles that slowly decayed back into the cell membrane. These non-productive events became more abundant in VPS4 knockout cell lines. Strikingly, the absence of VPS4B, rather than VPS4A, increased the production of short viral particles, suggesting a role for VPS4B in earlier stages of HIV-1 budding than traditionally thought.
Assuntos
HIV-1 , ATPases Vacuolares Próton-Translocadoras , Humanos , HIV-1/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Montagem de Vírus , Transporte Proteico , ATPases Vacuolares Próton-Translocadoras/metabolismoRESUMO
The HIV core consists of the viral genome and associated proteins encased by a cone-shaped protein shell termed the capsid. Successful infection requires reverse transcription of the viral genome and disassembly of the capsid shell within a cell in a process known as uncoating. The integrity of the viral capsid is critical for reverse transcription, yet the viral capsid must be breached to release the nascent viral DNA prior to integration. We employed atomic force microscopy to study the stiffness changes in HIV-1 cores during reverse transcription in vitro in reactions containing the capsid-stabilizing host metabolite IP6 Cores exhibited a series of stiffness spikes, with up to three spikes typically occurring between 10-30, 40-80, and 120-160 minutes after initiation of reverse transcription. Addition of the reverse transcriptase (RT) inhibitor efavirenz eliminated the appearance of these spikes and the subsequent disassembly of the capsid, thus establishing that both result from reverse transcription. Using timed addition of efavirenz, and analysis of an RNAseH-defective RT mutant, we established that the first stiffness spike requires minus-strand strong stop DNA synthesis, with subsequent spikes requiring later stages of reverse transcription. Additional rapid AFM imaging experiments revealed repeated morphological changes in cores that were temporally correlated with the observed stiffness spikes. Our study reveals discrete mechanical changes in the viral core that are likely related to specific stages of reverse transcription. These reverse-transcription-induced changes in the capsid progressively remodel the viral core to prime it for temporally accurate uncoating in target cells.ImportanceFor successful infection, the HIV-1 genome, which is enclosed inside a capsid shell, must be reverse transcribed into double-stranded DNA and released from the capsid (in a process known as uncoating) before it can be integrated into the target cell genome. The mechanism of HIV-1 uncoating is a pivotal question of long standing. Using atomic force microscopy to analyze individual HIV-1 cores during reverse transcription, we observe a reproducible pattern of stiffness spikes. These spikes were shown to be associated with distinct stages of the reverse transcription reaction. Our findings suggest that these reverse-transcription-induced alterations gradually prepared the core for uncoating at the right time and location in target cells.