Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 560(7717): 233-237, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069051

RESUMO

Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1-4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Planeta Terra , Fungos/isolamento & purificação , Microbiota/fisiologia , Microbiologia do Solo , Bactérias/genética , Código de Barras de DNA Taxonômico , Resistência Microbiana a Medicamentos/genética , Fungos/genética , Concentração de Íons de Hidrogênio , Metagenômica , Microbiota/genética , Oceanos e Mares , Chuva , Água do Mar/microbiologia
2.
ISME J ; 10(4): 885-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26394006

RESUMO

A central challenge in ecology is to understand the relative importance of processes that shape diversity patterns. Compared with aboveground biota, little is known about spatial patterns and processes in soil organisms. Here we examine the spatial structure of communities of small soil eukaryotes to elucidate the underlying stochastic and deterministic processes in the absence of environmental gradients at a local scale. Specifically, we focus on the fine-scale spatial autocorrelation of prominent taxonomic and functional groups of eukaryotic microbes. We collected 123 soil samples in a nested design at distances ranging from 0.01 to 64 m from three boreal forest sites and used 454 pyrosequencing analysis of Internal Transcribed Spacer for detecting Operational Taxonomic Units of major eukaryotic groups simultaneously. Among the main taxonomic groups, we found significant but weak spatial variability only in the communities of Fungi and Rhizaria. Within Fungi, ectomycorrhizas and pathogens exhibited stronger spatial structure compared with saprotrophs and corresponded to vegetation. For the groups with significant spatial structure, autocorrelation occurred at a very fine scale (<2 m). Both dispersal limitation and environmental selection had a weak effect on communities as reflected in negative or null deviation of communities, which was also supported by multivariate analysis, that is, environment, spatial processes and their shared effects explained on average <10% of variance. Taken together, these results indicate a random distribution of soil eukaryotes with respect to space and environment in the absence of environmental gradients at the local scale, reflecting the dominant role of drift and homogenizing dispersal.


Assuntos
Biota , Eucariotos/classificação , Microbiologia do Solo , Ecologia , Estônia , Florestas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Árvores/microbiologia
3.
ISME J ; 10(2): 346-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26172210

RESUMO

Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.


Assuntos
Biodiversidade , Eucariotos/isolamento & purificação , Fungos/isolamento & purificação , Microbiologia do Solo , Solo/parasitologia , Animais , Biomassa , Biota , Eucariotos/classificação , Eucariotos/genética , Finlândia , Fungos/classificação , Fungos/genética , Solo/química , Árvores/microbiologia
4.
Science ; 346(6213): 1256688, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25430773

RESUMO

Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.


Assuntos
Fungos/classificação , Fungos/fisiologia , Microbiologia do Solo , Solo , Código de Barras de DNA Taxonômico , Florestas , Fungos/genética , Geografia , Pradaria , Tundra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA