Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Genet Eng Rev ; : 1-29, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36117472

RESUMO

Manufacturing new materials at the nanoscale level is a field that is rapidly expanding with widespread application in advanced science and MMT is effectively used for the technology. Nanoparticles (NP), the building blocks of nanotechnology, exhibit improved properties than the larger counterparts and can be prepared from a variety of metals, including silver, copper, gold, zinc, and others. Phytonanotechnology is gaining major attention as various clinical researches have focused on the excellent properties (physicochemical and biological) of nanoscale phytochemicals and its applications in biological systems. In recent developments, pomegranate (Punica granatum L.) has gained major attention due to the phenolic compounds like apigenin, caffeic acid, chlorogenic acid, cyanidin, ellagic acid, gallic acid, granatin A, granatin B, pelargonidin, punicalagin, punicalin and quercetin found in its peel. Pomegranate Peel Extract (PPE) that aid the synthesis of PPE mediated nanoparticles (PPE-MNPs) like PPE-MAuNPs, PPE-MAgNPs, PPE-MZnONPs, PPE-MCuNPs, PPE-MPtNPs and PPE-MFeNPs has yielded plethora of beneficial properties in both plants and humans. In the current review, we discuss in detail the recent advances in synthesis and characterization of various nanoparticles from PPE. Moreover, the multitude biological properties of PPE-MNPs make up the long list of clinical uses. In addition, we discuss the pharmacokinetics, current advantages, and limitations of PPE-MNPs which can further help in development of more efficient therapeutics. Despite some of the challenges, PPE-MNPs hold a lot of potential for drug delivery and are always a better choice. The convergence of science and engineering has created new hopes, in which phytomedicines will have more efficacy, bioavailability, and less toxicity.

2.
Dalton Trans ; 50(41): 14891-14907, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607338

RESUMO

In this work, we demonstrate the microwave assisted solution combustion synthesis of aliovalent cation substituted Zn0.94M0.06-xLixO (M: Fe3+, Al3+, Cr3+) nanoparticles. The structural features, photoluminescence and photocatalytic properties were characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and UV-visible and photoluminescence (PL) techniques. We have introduced aliovalent cations such as reducible Fe3+, stable Al3+ and oxidisable Cr3+ ions into ZnO and investigated its structural and optical properties. The charge balance and defect stoichiometric composition of ZnO were also studied by co-doping with Li+ ions. By understanding the photoluminescence and photocatalytic activity of doped and co-doped ZnO nanoparticles, the defect chemistry of ZnO is explained in detail. The photocatalytic efficiency of various doped and co-doped ZnO catalysts was compared with respect to the degradation of rhodamine B dye. Among them, the CZO, AZO and L3AZO catalysts showed enhanced photo-degradation efficiencies of 98.1%, 97.6% and 96.6%, respectively, which are high as compared to that of ZnO (89%). This work presents a novel and straightforward, low-cost, tunable and scalable fabrication protocol for highly efficient ZnO-based photocatalysts for practical applications.

4.
Bioorg Med Chem Lett ; 30(7): 126987, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029324

RESUMO

Pyrrolobenzodiazepines (PBDs) and their dimers (bis-PBDs) have emerged as some of the most potent chemotherapeutic compounds and are currently under development as novel payloads in antibody-drug conjugates (ADCs). However, when used as stand-alone therapeutics or as warheads for small molecule drug conjugates (SMDCs), dose-limiting toxicities are often observed. As an elegant solution to this inherent problem, we designed and synthesized a diazepine-ring-opened bis-PBD prodrug (pro-PBD-PBD) folate conjugate lacking the one of the two imine moieties found in the corresponding free bis-PBD. Upon entering a targeted cell, cleavage of the linker system, including the hydrolysis of an oxazolidine moiety, results in the formation of a reactive intermediate which possesses a newly formed aldehyde as well as an aromatic amine. A fast and spontaneous intramolecular ring-closing reaction subsequently takes place as the aromatic amine adds to the aldehyde with the loss of water to give the imine, and as a result, the diazepine ring, thereby delivering the bis-PBD to the targeted cell. The in vitro and in vivo activity of this conjugate has been evaluated on folate receptor positive KB cells. Sub-nanomolar activity with good specificity and high cure rates with minimal toxicity have been observed.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Benzodiazepinas/uso terapêutico , Receptores de Folato com Âncoras de GPI/metabolismo , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Pirróis/uso terapêutico , Animais , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/farmacologia , Benzodiazepinas/síntese química , Benzodiazepinas/farmacologia , Desenho de Fármacos , Feminino , Células HeLa , Humanos , Camundongos Nus , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Pirróis/síntese química , Pirróis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
ACS Omega ; 2(11): 7892-7903, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023566

RESUMO

Cationic lipid-guided nucleic acid delivery holds great promise in gene therapy and genome-editing applications for treating genetic diseases. However, the major challenge lies in achieving therapeutically relevant efficiencies. Prior findings, including our own, demonstrated that asymmetry in the hydrophobic core of cationic lipids imparted superior transfection efficiencies. To this end, we have developed a lipid nanocarrier system with an asymmetric hydrophobic core (PS-Lips) derived from a mixture of fatty acids of food-grade palmstearin and compared its efficiency with symmetric palmitic acid-based nanocarrier system (P-Lip). PS-Lips exhibited superior transfection efficiencies with both plasmid DNA (pDNA) and mRNA in multiple cultured cells than the control P-Lip. More importantly, PS-Lips exhibited 2-fold superior transfections with linear nucleic acid, green fluorescent protein (GFP) mRNA in hematopoietic cells, when compared with the commercial control lipofectamine RNAiMAX. PS-Lips was also found to be effective in delivering genome-editing tools (CRISPR/Cas9, sgRNA encoded pDNA with a reporter GFP construct) than P-Lip in HEK-293 cells. In the present study, we report that cationic liposomes derivatized from natural food-grade fat palmstearin with a natural hydrophobic core asymmetry are efficient in delivering both linear and circular nucleic acids. In particular, PS-Lips is efficient in delivering mRNA to hematopoietic cells. These findings can be further exploited in the genome-editing approach for treating ß-globinopathies.

6.
Phys Chem Chem Phys ; 18(42): 29447-29457, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27738691

RESUMO

Red light emitting cubic Zr0.99Eu0.01O2:Li+ (0-9 mol%) nanoparticles are synthesized by a low temperature, self-propagating solution combustion method using oxalyl di-hydrazide (ODH) as fuel. In this study, we report systematic investigation of the effect of lithium ion (Li+) concentration on the structural properties and the photoluminescence of zirconia. With increasing lithium concentration, the crystallinity of the samples increases and the lattice strain decreases. The higher crystallinity is likely due to charge compensation achieved by replacing one Zr4+ ion by a Eu3+ and a Li+ ion. Scanning electron micrographs (SEM) reveal a mesoporous structure characteristic of combustion derived nanomaterials. Photoluminescence (PL) spectra show that the intensity of the red emission (606 nm) is highly dependent on Li+ ion concentration. Furthermore there is a promising enhancement in the associated lifetime. Upon Li+ doping, the PL intensity of the samples is found to increase by two fold compared to the undoped sample. Variation of PL intensity with Li+ concentration is attributed to the differences in probability of non-radiative recombination (relaxing). Intensity parameters (Ω2, Ω) and radiative properties such as transition rates (A), branching ratios (ß), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τ) are calculated using the Judd-Ofelt theory. The calculated values suggest that in optimally co-doped samples, in addition to improved crystallinity and charge compensation, the lowering of Eu3+ site symmetry and the increase in the covalency of Eu-O bonding due to interstitial Li are responsible for the observed enhancement in PL intensity.

7.
Mol Med ; 21: 584-96, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26181632

RESUMO

Folate receptor (FR)-ß has been identified as a promising target for antimacrophage and antiinflammatory therapies. In the present study, we investigated EC0565, a folic acid-derivative of everolimus, as a FR-specific inhibitor of the mammalian target of rapamycin (mTOR). Because of its amphiphilic nature, EC0565 was first evaluated for water solubility, critical micelle formation, stability in culture and FR-binding specificity. Using FR-expressing macrophages, the effect of EC0565 on mTOR signaling and cellular proliferation was studied. The pharmacokinetics, metabolism and bioavailability of EC0565 were studied in normal rats. The in vivo activity of EC0565 was assessed in rats with adjuvant arthritis, a "macrophage-rich" model with close resemblance to rheumatoid arthritis. EC0565 forms micellar aggregates in physiological buffers and demonstrates good water solubility as well as strong multivalent FR-binding capacity. EC0565 inhibited mTOR signaling in rat macrophages at nanomolar concentrations and induced G0/G1 cell cycle arrest in serum-starved RAW264.7 cells. Subcutaneously administered EC0565 in rats displayed good bioavailability and a relatively long half-life (~12 h). When given at 250 nmol/kg, EC0565 selectively inhibited proliferating cell nuclear antigen expression in thioglycollate-stimulated rat peritoneal cells. With limited dosing regimens, the antiarthritic activity of EC0565 was found superior to that of etanercept, everolimus and a nontargeted everolimus analog. The in vivo activity of EC0565 was also comparable to that of a folate-targeted aminopterin. Folate-targeted mTOR inhibition may be an effective way of suppressing activated macrophages in sites of inflammation, especially in nutrient-deprived conditions, such as in the arthritic joints. Further investigation and improvement upon the physical and biochemical properties of EC0565 are warranted.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Everolimo/análogos & derivados , Everolimo/administração & dosagem , Ácido Fólico/análogos & derivados , Ácido Fólico/administração & dosagem , Inflamação/tratamento farmacológico , Serina-Treonina Quinases TOR/genética , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/genética , Artrite Experimental/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Proliferação de Células/efeitos dos fármacos , Everolimo/química , Receptor 2 de Folato/genética , Receptor 2 de Folato/metabolismo , Ácido Fólico/química , Humanos , Inflamação/genética , Inflamação/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 132: 305-12, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24878437

RESUMO

ZnO:Eu (0.1 mol%) nanopowders have been synthesized by auto ignition based low temperature solution combustion method. Powder X-ray diffraction (PXRD) patterns confirm the nanosized particles which exhibit hexagonal wurtzite structure. The crystallite size estimated from Scherrer's formula was found to be in the range 35-39 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal particles are agglomerated with quasi-hexagonal morphology. A blue shift of absorption edge with increase in band gap is observed for Eu doped ZnO samples. Upon 254 nm excitation, ZnO:Eu nanopowders show peaks in regions blue (420-484 nm), green (528 nm) and red (600 nm) which corresponds to both Eu2+ and Eu3+ ions. The electron paramagnetic resonance (EPR) spectrum exhibits a broad resonance signal at g=4.195 which is attributed to Eu2+ ions. Further, EPR and thermoluminescence (TL) studies reveal presence of native defects in this phosphor. Using TL glow peaks the trap parameters have been evaluated and discussed.


Assuntos
Európio/química , Luminescência , Óxido de Zinco/química , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Raios gama , Cinética , Nanopartículas/química , Nanopartículas/ultraestrutura , Pós , Soluções , Espectrofotometria Ultravioleta , Difração de Raios X
9.
Artigo em Inglês | MEDLINE | ID: mdl-24682055

RESUMO

This work explores the preparation of nanocrystalline Cr(3+) (1-5 mol%) doped CaSiO3 phosphors by solution combustion process and study of its photoluminescence (PL) behavior. The nanopowders are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red (FTIR) spectroscopy. PXRD results confirm monoclinic phase upon calcination at 950°C for 3h. SEM micrographs indicates that the powder is highly porous and agglomerated. The TEM images show the powder to consist of spherical shaped particles of size ∼30-60 nm. Upon 323 nm excitation, the emission profile of CaSiO3:Cr(3+) exhibits a narrow red emission peak at 641nm due to (2)E→(4)A2 transition and broad band at 722 nm due to (4)T2g→(4)A2g. It is observed that PL intensity increases with increase in Cr(3+) concentration and highest PL intensity is observed for 3 mol% doped sample. The PL intensity decreases with further increase in Cr(3+) doping. This decrease in PL intensity beyond 3 mol% is ascribed to concentration quenching. Racah parameters are calculated to describe the effects of electron-electron repulsion within the crystal lattice. The parameters show 21% reduction in the Racah parameter of free ion and the complex, indicating the moderate nephelauxetic effect in the lattice.


Assuntos
Compostos de Cálcio/química , Compostos de Cálcio/síntese química , Cromo/química , Nanopartículas/química , Silicatos/química , Silicatos/síntese química , Espectrometria de Fluorescência/métodos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 128: 891-901, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24709356

RESUMO

CaTiO3:Sm(3+) (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method [LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is ∼20-35 nm. Photoluminescence (PL) properties of Sm(3+) (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm(3+), such as (4)G5/2→(6)H5/2 (561 nm), (4)G5/2→(6)H7/2 (601-611 nm), (4)G5/2→(6)H9/2 (648 nm) and (4)G5/2→(6)H11/2 (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5°Cs(-1). Two well resolved glow peaks at 164°C and 214°C along with shouldered peak at 186°C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail.


Assuntos
Compostos de Cálcio/química , Luminescência , Metais Pesados/química , Nanopartículas/química , Óxidos/química , Samário/química , Titânio/química
11.
Bioconjug Chem ; 25(3): 560-8, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24564229

RESUMO

Vintafolide is a potent folate-targeted vinca alkaloid small molecule drug conjugate (SMDC) that has shown promising results in multiple clinical oncology studies. Structurally, vintafolide consists of 4 essential modules: (1) folic acid, (2) a hydrophilic peptide spacer, (3) a disulfide-containing, self-immolative linker, and (4) the cytotoxic drug, desacetylvinblastine hydrazide (DAVLBH). Here, we report a structure-activity study evaluating the biological impact of (i) substituting DAVLBH within the vintafolide molecule with other vinca alkaloid analogues such as vincristine, vindesine, vinflunine, or vinorelbine; (ii) substituting the naturally (S)-configured Asp-Arg-Asp-Asp-Cys peptide with alternative hydrophilic spacers of varied composition; and (iii) varying the composition of the linker module. A series of vinca alkaloid-containing SMDCs were synthesized and purified by HPLC and LCMS. The SMDCs were screened in vitro against folate receptor (FR)-positive cells, and anti-tumor activity was tested against well-established subcutaneous FR-positive tumor xenografts. The cytotoxic and anti-tumor activity was directly compared to that produced by vintafolide. Among all the folate vinca alkaloid SMDCs tested, DAVLBH-containing SMDCs were active, while those constructed with vincristine, vindesine, or vinorelbine analogues failed to produce meaningful biological activity. Within the DAVLBH series, having a bioreleasable, self-immolative linker system was found to be critical for activity since multiple analogues constructed with thioether-based linkers all failed to produce meaningful activity both in vitro and in vivo. Substitutions of some or all of the natural amino acids within vintafolide's hydrophilic spacer module did not significantly change the in vitro or in vivo potency of the SMDCs. Vintafolide remains one of the most potent folate-vinca alkaloid SMDCs produced to date, and continued clinical development is warranted.


Assuntos
Antineoplásicos/farmacologia , Ácido Fólico/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Alcaloides de Vinca/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ácido Fólico/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Conformação Molecular , Neoplasias Experimentais/patologia , Estereoisomerismo , Relação Estrutura-Atividade , Alcaloides de Vinca/química
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 122: 216-22, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24317256

RESUMO

Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size ∼10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at ∼365 and ∼390 nm. Both the samples show shoulder peak at ∼420 nm, along with four weak emission bands at ∼484, ∼528, ∼614 and ∼726 nm. TL studies were carried out pre-irradiating samples with γ-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 °C is recorded which can be ascribed to deep traps. With increase in γ radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material.


Assuntos
Medições Luminescentes , Nanopartículas/química , Temperatura , Zircônio/química , Cinética , Nanopartículas/ultraestrutura , Pós , Soluções , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Nucl Med Biol ; 38(5): 715-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21718947

RESUMO

INTRODUCTION: Use of folic acid radioconjugates for folate receptor (FR) targeting is a promising strategy for imaging purposes as well as for potential therapy of cancer and inflammatory diseases due to the frequent FR overexpression found on cancer cells and activated macrophages. Herein, we report on preclinical results using a novel DOTA-Bz-EDA-folate conjugate radiolabeled with [(67)Ga]-gallium. METHODS: DOTA-Bz-EDA-folate was prepared by conjugation of ethylenediamine-(γ)-folate with 2-(p-isothiocyanobenzyl)-DOTA. Radiolabeling was carried out with (67)GaCl(3) according to standard procedures. Biodistribution studies of the tracer were performed in mice bearing FR-positive KB tumor xenografts. The effects on radiofolate biodistribution with coadministered renal uptake-blocking amino acids, diuretic agents, antifolates as well as different routes of administration were likewise investigated. Supportive imaging studies were performed using a small-animal single photon emission computed tomography (SPECT)/CT scanner. RESULTS: (67)Ga-DOTA-Bz-EDA-folate showed a high and specific accumulation in tumors (6.30%±0.75% ID/g, 1 h pi and 6.08%±0.89% ID/g, 4 h pi). Nonspecific radioactivity uptake in nontargeted tissues was negligible, but significant accumulation was found in FR-positive kidneys, which resulted in unfavorably low tumor-to-kidney ratios (<0.1). Coadministered amino acids or diuretics did not effectively reduce renal accumulation; in contrast, predosed pemetrexed did significantly reduce kidney uptake (<29% of control values). The SPECT/CT studies confirmed the excellent tumor-to-background contrast of (67)Ga-radiofolate and the favorable reduction in kidney uptake (with improved imaging quality) resulting from pemetrexed administration. CONCLUSION: Conventional methods to reduce kidney uptake of radiofolates fail. However, the novel (67)Ga-radiolabeled DOTA-Bz-EDA-folate can effectively be used to image FR-positive cancer and potentially inflammatory diseases. Due to its rapid blood clearance properties, this tracer is also a promising candidate for positron emission tomography imaging if radiolabeled with the short-lived [(68)Ga]-gallium radionuclide.


Assuntos
Ácido Fólico/química , Ácido Fólico/farmacocinética , Compostos Heterocíclicos/química , Isotiocianatos/química , Neoplasias do Colo do Útero/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Feminino , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/administração & dosagem , Antagonistas do Ácido Fólico/farmacologia , Radioisótopos de Gálio , Glutamatos/administração & dosagem , Glutamatos/farmacologia , Guanina/administração & dosagem , Guanina/análogos & derivados , Guanina/farmacologia , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Injeções , Células KB , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Pemetrexede , Traçadores Radioativos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Urina/química , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/urina
14.
Bioorg Med Chem Lett ; 21(4): 1202-5, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21236665

RESUMO

Efficient syntheses of folate receptor (FR) targeting conjugates of the anti-inflammatory, aminopterin hydrazide, are described. 2-{4-Benzoylamino}-5-oxo-5-{N'-[2-(pyridin-2-yldisulfanyl)-ethoxycarbonyl]-hydrazino}-pentanoic acid is synthesized from commercially available 4-[(2-amino-4-imino-3,4-dihydro-pteridin-6-yl-methyl)-amino]-benzoic acid. Conjugation of this novel, activated aminopterin hydrazide to folic acid through cysteine-terminating (C-terminus), peptide/carbohydrate spacers results in highly water soluble conjugates which allow for the release of free aminopterin hydrazide within the endosomes of targeted cells.


Assuntos
Aminopterina/química , Anti-Inflamatórios/química , Ácido Fólico/análogos & derivados , Aminopterina/síntese química , Aminopterina/uso terapêutico , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico , Desenho de Fármacos , Ácido Fólico/síntese química , Ácido Fólico/química , Ácido Fólico/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Estereoisomerismo
15.
J Med Chem ; 53(21): 7767-77, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20936874

RESUMO

Ligand-targeted therapeutics have increased in prominence because of their potential for improved potency and reduced toxicity. However, with the advent of personalized medicine, a need for greater versatility in ligand-targeted drug design has emerged, where each tumor-targeting ligand should be capable of delivering a variety of therapeutic agents to the same tumor, each therapeutic agent being selected for its activity on a specific patient's cancer. In this report, we describe the use of a prostate-specific membrane antigen (PSMA)-targeting ligand to deliver multiple unrelated cytotoxic drugs to human prostate cancer (LNCaP) cells. We demonstrate that the PSMA-specific ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid, is capable of mediating the targeted killing of LNCaP cells with many different therapeutic warheads. These results suggest that flexibility can be designed into ligand-targeted therapeutics, enabling adaptation of a single targeting ligand for the treatment of patients with different sensitivities to different chemotherapies.


Assuntos
Antígenos de Superfície/metabolismo , Antineoplásicos/síntese química , Glutamato Carboxipeptidase II/metabolismo , Glutaratos/síntese química , Pró-Fármacos/síntese química , Ureia/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glutaratos/química , Glutaratos/farmacologia , Humanos , Ligantes , Masculino , Terapia de Alvo Molecular , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Neoplasias da Próstata , Relação Estrutura-Atividade , Ureia/síntese química , Ureia/química , Ureia/farmacologia
16.
Bioorg Med Chem Lett ; 20(15): 4578-81, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20594844

RESUMO

Efficient regioselective syntheses of conjugates of folic acid and cytotoxic agents derived from natural epothilones are described. These folate receptor (FR) targeting compounds are water soluble and incorporate a hydrophilic peptide-based spacer unit and a reducible self-immolative disulfide-based linker system between the FR-targeting ligand and the parent drug.


Assuntos
Antineoplásicos/síntese química , Epotilonas/química , Receptores de Folato com Âncoras de GPI/antagonistas & inibidores , Ácido Fólico/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dissulfetos/química , Epotilonas/síntese química , Epotilonas/farmacologia , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/síntese química , Ácido Fólico/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
17.
J Org Chem ; 75(11): 3685-91, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20423159

RESUMO

To better regulate the biodistribution of the vinblastine-folate conjugate, EC145, a new folate-spacer that incorporates 1-amino-1-deoxy-D-glucitol-gamma-glutamate subunits into a peptidic backbone, was synthesized. Synthesis of Fmoc-3,4;5,6-di-O-isopropylidene-1-amino-1-deoxy-D-glucitol-gamma-glutamate 20, suitable for Fmoc-strategy solid-phase peptide synthesis (SPPS), was achieved in four steps from delta-gluconolactone. Addition of alternating glutamic acid and 20 moieties onto a cysteine-loaded resin, followed by the addition of folate, deprotection, and cleavage, resulted in the isolation of the new folate-spacer: Pte-gammaGlu-(Glu(1-amino-1-deoxy-D-glucitol)-Glu)(2)-Glu(1-amino-1-deoxy-D-glucitol)-Cys-OH (21). The addition of 21 to an appropriately modified desacetylvinblastine hydrazide (DAVLBH) resulted in a conjugate (25) with an improved therapeutic index. Treatment of 25 with DTT in neutral buffer at room temperature demonstrated that free DAVLBH would be released under the reductive environment of the internalized endosome.


Assuntos
Carboidratos/química , Ácido Fólico/análogos & derivados , Alcaloides de Vinca/síntese química , Alcaloides de Vinca/toxicidade , Animais , Antineoplásicos , Desenho de Fármacos , Endossomos/metabolismo , Ácido Fólico/síntese química , Ácido Fólico/química , Ácido Fólico/farmacocinética , Ácido Fólico/uso terapêutico , Ácido Fólico/toxicidade , Humanos , Distribuição Tecidual , Vimblastina/química , Vimblastina/uso terapêutico , Alcaloides de Vinca/farmacocinética
18.
AAPS J ; 11(3): 628-38, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19728104

RESUMO

Cancer vaccine/immunotherapy rarely involves systemic administration of an immunogenic compound to an actively immunized host. We have developed such a strategy that utilizes folate to deliver antigenic haptens [e.g., fluorescein (FITC) and dinitrophenyl] to folate receptor-positive tumors in a hapten-pre-vaccinated host. Here, we investigated the safety of this novel approach and developed strategies to prevent drug-related hypersensitivity. Using FITC as the model hapten, we identified a potential source of allergic species in folate-FITC preparations by LC-MS/MS. In mice and guinea pigs, we tested the significance of this impurity by passive cutaneous anaphylaxis and active systemic anaphylaxis assays. We studied the effect of immunogen (e.g., KLH-FITC) dose and derived a desensitization regimen that was further evaluated in a murine tumor model. Administration of folate-FITC with low multi-haptenated contaminants (e.g. bis-FITC) resulted in hypersensitivity in underimmunized animals. However, this drug-related hypersensitivity may be independently prevented by (1) increasing the immunogen dose and/or (2) desensitizing animals with folate-FITC during vaccination. In addition, such manipulation in vivo did not appear to negatively alter the effectiveness of immunotherapy. This study provided confidence on the safety of folate-hapten-targeted cancer immunotherapy in an actively immunized host.


Assuntos
Hipersensibilidade a Drogas/prevenção & controle , Antagonistas do Ácido Fólico/uso terapêutico , Haptenos/uso terapêutico , Imunoterapia , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Feminino , Antagonistas do Ácido Fólico/efeitos adversos , Cobaias , Haptenos/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico
19.
Mol Pharm ; 6(3): 780-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19361233

RESUMO

Prostate cancer (PCa) is a major cause of mortality and morbidity in Western society today. Current methods for detecting PCa are limited, leaving most early malignancies undiagnosed and sites of metastasis in advanced disease undetected. Major deficiencies also exist in the treatment of PCa, especially metastatic disease. In an effort to improve both detection and therapy of PCa, we have developed a PSMA-targeted ligand that delivers attached imaging and therapeutic agents selectively to PCa cells without targeting normal cells. The PSMA-targeted radioimaging agent (DUPA-(99m)Tc) was found to bind PSMA-positive human PCa cells (LNCaP cell line) with nanomolar affinity (K(D) = 14 nM). Imaging and biodistribution studies revealed that DUPA-(99m)Tc localizes primarily to LNCaP cell tumor xenografts in nu/nu mice (% injected dose/gram = 11.3 at 4 h postinjection; tumor-to-muscle ratio = 75:1). Two PSMA-targeted optical imaging agents (DUPA-FITC and DUPA-rhodamine B) were also shown to efficiently label PCa cells and to internalize and traffic to intracellular endosomes. A PSMA-targeted chemotherapeutic agent (DUPA-TubH) was demonstrated to kill PSMA-positive LNCaP cells in culture (IC(50) = 3 nM) and to eliminate established tumor xenografts in nu/nu mice with no detectable weight loss. Blockade of tumor targeting upon administration of excess PSMA inhibitor (PMPA) and the absence of targeting to PSMA-negative tumors confirmed the specificity of each of the above targeted reagents for PSMA. Tandem use of the imaging and therapeutic agents targeted to the same receptor could allow detection, staging, monitoring, and treatment of PCa with improved accuracy and efficacy.


Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Glutamato Carboxipeptidase II/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Microscopia Confocal , Compostos de Organotecnécio/síntese química , Compostos de Organotecnécio/química , Neoplasias da Próstata/patologia , Tecnécio/química , Transplante Heterólogo
20.
J Org Chem ; 72(16): 5968-72, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17602528

RESUMO

We describe the development of methodology which allows for the introduction of a second disulfide bond into a molecular framework with a pre-existing disulfide linker system. Compounds which contain an S-9-fluorenylmethyl-protected thiol and an additional disulfide linkage are deprotected in situ and trapped with an activated thiophile. This methodology allowed for the synthesis of the first molecule possessing two different biologically active agents covalently attached to a folate receptor targeting ligand unit via two disulfide-based release systems.


Assuntos
Proteínas de Transporte/química , Química Orgânica/métodos , Ácido Fólico/química , Química Farmacêutica/métodos , Dissulfetos/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Ligantes , Modelos Químicos , Peptídeos/química , Compostos de Sulfidrila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA