Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Inhal Toxicol ; : 1-19, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39418113

RESUMO

OBJECTIVE: Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO2) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO2 exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity. METHODS: Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO2 or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO2 instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies. RESULTS: cSiO2-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206+ monocytes, Ly6B.2+ neutrophils, CD3+ T cells, CD45R+ B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO2-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers. DISCUSSION: cSiO2 evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO2-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO2-triggered lung inflammation, fibrosis, and early autoimmunity in our model.

2.
Autoimmunity ; 57(1): 2370536, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38976509

RESUMO

Lupus, a systemic autoimmune disease shaped by gene-environment interplay, often progresses to endstage renal failure. While subchronic systemic exposure to bacterial lipopolysaccharide (LPS) triggers autoimmunity and glomerulonephritis in lupus-prone mice, it is unknown if inhaling LPS, which is common in certain occupations, can similarly trigger lupus. Here we determined how subchronic intranasal (IN) LPS instillation influences autoimmunity and glomerulonephritis development in lupusprone NZBWF1 female mice. Briefly, mice were IN-instilled with vehicle or E. coli LPS (0.8 µg/g) twice weekly for 5 wk, followed by necropsy. For systemic comparison, additional cohorts of mice were injected with LPS intraperitoneally (IP) using identical doses/timing. Lungs were assessed for inflammatory and autoimmune responses and then related to systemic autoimmunity and glomerulonephritis. IN/LPS exposure induced in the lung: i) leukocyte infiltration, ii)mRNA signatures for cytokines, chemokines, IFN-regulated, and cell death-related genes, iii) ectopic lymphoid tissue formation, and iv)diverse IgM and IgG autoantibodies (AAbs). Pulmonary effects coincided with enlarged spleens, elevated plasma IgG AAbs, and inflamed IgG-containing kidney glomeruli. In contrast, IP/LPS treatment induced systemic autoimmunity and glomerulonephritis without pulmonary manifestations. Taken together, these preclinical findings suggest the lung could serve as a critical nexus for triggering autoimmunity by respirable LPS in genetically predisposed individuals.


Assuntos
Administração Intranasal , Autoanticorpos , Autoimunidade , Modelos Animais de Doenças , Glomerulonefrite , Lipopolissacarídeos , Pulmão , Animais , Lipopolissacarídeos/imunologia , Camundongos , Autoimunidade/efeitos dos fármacos , Glomerulonefrite/imunologia , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Feminino , Pulmão/imunologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Autoanticorpos/imunologia , Autoanticorpos/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/etiologia , Citocinas/metabolismo
3.
Inhal Toxicol ; 36(2): 106-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38477125

RESUMO

OBJECTIVE: Occupational exposure to respirable crystalline silica (cSiO2) has been linked to lupus development. Previous studies in young lupus-prone mice revealed that intranasal cSiO2 exposure triggered autoimmunity, preventable with docosahexaenoic acid (DHA). This study explores cSiO2 and DHA effects in mature lupus-prone adult mice, more representative of cSiO2-exposed worker age. METHODS: Female NZBWF1 mice (14-week old) were fed control (CON) or DHA-supplemented diets. After two weeks, mice were intranasally instilled saline (VEH) or 1 mg cSiO2 weekly for four weeks. Cohorts were then analyzed 1- and 5-weeks postinstillation for lung inflammation, cell counts, chemokines, histopathology, B- and T-cell infiltration, autoantibodies, and gene signatures, with results correlated to autoimmune glomerulonephritis onset. RESULTS: VEH/CON mice showed no pathology. cSiO2/CON mice displayed significant ectopic lymphoid tissue formation in lungs at 1 week, increasing by 5 weeks. cSiO2/CON lungs exhibited elevated cellularity, chemokines, CD3+ T-cells, CD45R + B-cells, IgG + plasma cells, gene expression, IgG autoantibodies, and glomerular hypertrophy. DHA supplementation mitigated all these effects. DISCUSSION: The mature adult NZBWF1 mouse used here represents a life-stage coincident with immunological tolerance breach and one that more appropriately represents the age (20-30 yr) of cSiO2-exposed workers. cSiO2-induced robust pulmonary inflammation, autoantibody responses, and glomerulonephritis in mature adult mice, surpassing effects observed previously in young adults. DHA at a human-equivalent dosage effectively countered cSiO2-induced inflammation/autoimmunity in mature mice, mirroring protective effects in young mice. CONCLUSION: These results highlight life-stage significance in this preclinical lupus model and underscore omega-3 fatty acids' therapeutic potential against toxicant-triggered autoimmune responses.


Assuntos
Ácidos Graxos Ômega-3 , Glomerulonefrite , Pneumonia , Feminino , Camundongos , Humanos , Animais , Ácidos Graxos Ômega-3/toxicidade , Autoimunidade , Dióxido de Silício/toxicidade , Pneumonia/induzido quimicamente , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Ácidos Docosa-Hexaenoicos/toxicidade , Quimiocinas/toxicidade , Autoanticorpos , Imunoglobulina G
4.
Front Immunol ; 15: 1275265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361937

RESUMO

Introduction: Workplace exposure to respirable crystalline silica (cSiO2) has been epidemiologically linked to lupus. Consistent with this, repeated subchronic intranasal cSiO2 instillation in lupus-prone NZBWF1 mice induces inflammation-/autoimmune-related gene expression, ectopic lymphoid tissue (ELT), autoantibody (AAb) production in the lung within 5 to 13 wk followed systemic AAb increases and accelerated onset and progression of glomerulonephritis within 13 to 17 wk. Interestingly, dietary docosahexaenoic acid (DHA) supplementation suppresses these pathologic effects, but the underlying molecular mechanisms remain unclear. Methods: This study aimed to test the hypothesis that dietary DHA supplementation impacts acute transcriptional and autoantibody responses in the lungs of female NZBWF1 mice 1 and 4 wk after a single high-dose cSiO2 challenge. Groups of mice were initially fed a control (Con) diet or a DHA-containing diet (10 g/kg). Cohorts of Con- and DHA-fed were subjected to a single intranasal instillation of 2.5 mg cSiO2 in a saline vehicle (Veh), while a Con-fed cohort was instilled with Veh only. At 1 and 4 wk post-instillation (PI), we compared cSiO2's effects on innate-/autoimmune-related gene expression and autoantibody (AAb) in lavage fluid/lungs of Con- and DHA-fed mice and related these findings to inflammatory cell profiles, histopathology, cell death, and cytokine/chemokine production. Results: DHA partially alleviated cSiO2-induced alterations in total immune cell and lymphocyte counts in lung lavage fluid. cSiO2-triggered dead cell accumulation and levels of inflammation-associated cytokines and IFN-stimulated chemokines were more pronounced in Con-fed mice than DHA-fed mice. Targeted multiplex transcriptome analysis revealed substantial upregulation of genes associated with autoimmune pathways in Con-fed mice in response to cSiO2 that were suppressed in DHA-fed mice. Pathway analysis indicated that DHA inhibited cSiO2 induction of proinflammatory and IFN-regulated gene networks, affecting key upstream regulators (e.g., TNFα, IL-1ß, IFNAR, and IFNγ). Finally, cSiO2-triggered AAb responses were suppressed in DHA-fed mice. Discussion: Taken together, DHA mitigated cSiO2-induced upregulation of pathways associated with proinflammatory and IFN-regulated gene responses within 1 wk and reduced AAb responses by 4 wk. These findings suggest that the acute short-term model employed here holds substantial promise for efficient elucidation of the molecular mechanisms through which omega-3 PUFAs exert protective effects against cSiO2-induced autoimmunity.


Assuntos
Ácidos Docosa-Hexaenoicos , Pulmão , Humanos , Feminino , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Pulmão/patologia , Inflamação/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Autoanticorpos/metabolismo , Suplementos Nutricionais , Dióxido de Silício/farmacologia
5.
Virus Res ; 341: 199319, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38224840

RESUMO

Following the emergence of B.1.1.529 Omicron, the SARS-CoV-2 virus evolved into a significant number of sublineage variants that possessed numerous mutations throughout the genome, but particularly within the spike glycoprotein (S) gene. For example, the BQ.1.1 and the XBB.1 and XBB.1.5 subvariants contained 34 and 41 mutations in S, respectively. However, these variants elicited largely replication only or mild disease phenotypes in mice. To better model pathogenic outcomes and measure countermeasure performance, we developed mouse adapted versions (BQ.1.1 MA; XBB.1 MA; XBB.1.5 MA) that reflect more pathogenic acute phase pulmonary disease symptoms of SARS-CoV-2, as well as derivative strains expressing nano-luciferase (nLuc) in place of ORF7 (BQ.1.1 nLuc; XBB.1 nLuc; XBB.1.5 nLuc). Amongst the mouse adapted (MA) viruses, a wide range of disease outcomes were observed including mortality, weight loss, lung dysfunction, and tissue viral loads in the lung and nasal turbinates. Intriguingly, XBB.1 MA and XBB.1.5 MA strains, which contained identical mutations throughout except at position F486S/P in S, exhibited divergent disease outcomes in mice (Ao et al., 2023). XBB.1.5 MA infection was associated with significant weight loss and ∼45 % mortality across two independent studies, while XBB.1 MA infected animals suffered from mild weight loss and only 10 % mortality across the same two independent studies. Additionally, the development and use of nanoluciferase expressing strains provided moderate throughput for live virus neutralization assays. The availability of small animal models for the assessment of Omicron VOC disease potential will enable refined capacity to evaluate the efficacy of on market and pre-clinical therapeutics and interventions.


Assuntos
SARS-CoV-2 , Redução de Peso , Animais , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fenótipo
6.
Sci Rep ; 13(1): 16598, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789023

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with metabolic syndrome (MetS) in humans and elicits pathologies in rodents that resemble non-alcoholic fatty liver disease (NAFLD) in humans through activation of the aryl hydrocarbon receptor (AHR) pathway. Dysregulation of cholesterol homeostasis, an aspect of MetS, is linked to NAFLD pathogenesis. TCDD exposure is also linked to the suppression of genes that encode key cholesterol biosynthesis steps and changes in serum cholesterol levels. In a previous experiment, treating mice with TCDD in the presence of simvastatin, a 3-Hydroxy-3-Methylglutaryl-CoA Reductase competitive inhibitor, altered lipid and glycogen levels, AHR-battery gene expression, and liver injury in male mice compared to TCDD alone. The aim of this study was to deduce a possible mechanism(s) for the metabolic changes and increased injury using single-nuclei RNA sequencing in mouse liver. We demonstrated that co-treated mice experienced wasting and increased AHR activation compared to TCDD alone. Furthermore, relative proportions of cell (sub)types were different between TCDD alone and co-treated mice including important mediators of NAFLD progression like hepatocytes and immune cell populations. Analysis of non-overlapping differentially expressed genes identified several pathways where simvastatin co-treatment significantly impacted TCDD-induced changes, which may explain the differences between treatments. Overall, these results demonstrate a connection between dysregulation of cholesterol homeostasis and toxicant-induced metabolic changes.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Dibenzodioxinas Policloradas , Humanos , Camundongos , Masculino , Animais , Dibenzodioxinas Policloradas/toxicidade , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Expressão Gênica , Colesterol/metabolismo
7.
Front Immunol ; 14: 1124910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875087

RESUMO

Introduction: Lipopolysaccharide (LPS)-accelerated autoimmune glomerulonephritis (GN) in NZBWF1 mice is a preclinical model potentially applicable for investigating lipidome-modulating interventions against lupus. LPS can be expressed as one of two chemotypes: smooth LPS (S-LPS) or rough LPS (R-LPS) which is devoid of O-antigen polysaccharide sidechain. Since these chemotypes differentially affect toll-like receptor 4 (TLR4)-mediated immune cell responses, these differences may influence GN induction. Methods: We initially compared the effects of subchronic intraperitoneal (i.p.) injection for 5 wk with 1) Salmonella S-LPS, 2) Salmonella R-LPS, or 3) saline vehicle (VEH) (Study 1) in female NZBWF1 mice. Based on the efficacy of R-LPS in inducing GN, we next used it to compare the impact of two lipidome-modulating interventions, ω-3 polyunsaturated fatty acid (PUFA) supplementation and soluble epoxide hydrolase (sEH) inhibition, on GN (Study 2). Specifically, effects of consuming ω-3 docosahexaenoic acid (DHA) (10 g/kg diet) and/or the sEH inhibitor 1-(4-trifluoro-methoxy-phenyl)-3-(1-propionylpiperidin-4-yl) urea (TPPU) (22.5 mg/kg diet ≈ 3 mg/kg/day) on R-LPS triggering were compared. Results: In Study 1, R-LPS induced robust elevations in blood urea nitrogen, proteinuria, and hematuria that were not evident in VEH- or S-LPS-treated mice. R-LPS-treated mice further exhibited kidney histopathology including robust hypertrophy, hyperplasia, thickened membranes, lymphocytic accumulation containing B and T cells, and glomerular IgG deposition consistent with GN that was not evident in VEH- or SLPS-treated groups. R-LPS but not S-LPS induced spleen enlargement with lymphoid hyperplasia and inflammatory cell recruitment in the liver. In Study 2, resultant blood fatty acid profiles and epoxy fatty acid concentrations reflected the anticipated DHA- and TPPU-mediated lipidome changes, respectively. The relative rank order of R-LPS-induced GN severity among groups fed experimental diets based on proteinuria, hematuria, histopathologic scoring, and glomerular IgG deposition was: VEH/CON< R-LPS/DHA ≈ R-LPS/TPPU<<< R-LPS/TPPU+DHA ≈ R-LPS/CON. In contrast, these interventions had modest-to- negligible effects on R-LPS-induced splenomegaly, plasma antibody responses, liver inflammation, and inflammation-associated kidney gene expression. Discussion: We show for the first time that absence of O-antigenic polysaccharide in R-LPS is critical to accelerated GN in lupus-prone mice. Furthermore, intervention by lipidome modulation through DHA feeding or sEH inhibition suppressed R-LPS-induced GN; however, these ameliorative effects were greatly diminished upon combining the treatments.


Assuntos
Glomerulonefrite , Lipopolissacarídeos , Feminino , Animais , Camundongos , Epóxido Hidrolases , Hematúria , Hiperplasia , Lipidômica , Inflamação , Antígenos O , Ácidos Graxos , Ácidos Graxos Insaturados , Suplementos Nutricionais , Imunoglobulina G
8.
Toxicol Sci ; 191(1): 61-78, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36303316

RESUMO

Air pollution accounts for more than 7 million premature deaths worldwide. Using ultrafine carbon black (CB) and ozone (O3) as a model for an environmental co-exposure scenario, the dose response relationships in acute pulmonary injury and inflammation were determined by generating, characterizing, and comparing stable concentrations of CB aerosols (2.5, 5.0, 10.0 mg/m3), O3 (0.5, 1.0, 2.0 ppm) with mixture CB + O3 (2.5 + 0.5, 5.0 + 1.0, 10.0 + 2.0). C57BL6 male mice were exposed for 3 h by whole body inhalation and acute toxicity determined after 24 h. CB itself did not cause any alteration, however, a dose response in pulmonary injury/inflammation was observed with O3 and CB + O3. This increase in response with mixtures was not dependent on the uptake but was due to enhanced reactivity of the particles. Benchmark dose modeling showed several-fold increase in potency with CB + O3 compared with CB or O3 alone. Principal component analysis provided insight into response relationships between various doses and treatments. There was a significant correlation in lung responses with charge-based size distribution, total/alveolar deposition, oxidant generation, and antioxidant depletion potential. Lung tissue gene/protein response demonstrated distinct patterns that are better predicted by either particle dose/aerosol responses (interleukin-1ß, keratinocyte chemoattractant, transforming growth factor beta) or particle reactivity (thymic stromal lymphopoietin, interleukin-13, interleukin-6). Hierarchical clustering showed a distinct signature with high dose and a similarity in mRNA expression pattern of low and medium doses of CB + O3. In conclusion, we demonstrate that the biological outcomes from CB + O3 co-exposure are significantly greater than individual exposures over a range of aerosol concentrations and aerosol characteristics can predict biological outcome.


Assuntos
Poluentes Atmosféricos , Pneumopatias , Lesão Pulmonar , Ozônio , Pneumonia , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Lesão Pulmonar/metabolismo , Aerossóis e Gotículas Respiratórios , Pneumopatias/induzido quimicamente , Pulmão , Pneumonia/metabolismo , Inflamação/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
9.
Front Immunol ; 13: 993614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405730

RESUMO

Preclinical and clinical studies suggest that consumption of long chain omega-3 polyunsaturated fatty acids (PUFAs) reduces severity of chronic inflammatory and autoimmune diseases. While these ameliorative effects are conventionally associated with downregulated expression of proinflammatory cytokine and chemokine genes, our laboratory has recently identified Type 1 interferon (IFN1)-regulated gene expression to be another key target of omega-3 PUFAs. Here we used single cell RNA sequencing (scRNAseq) to gain new mechanistic perspectives on how the omega-3 PUFA docosahexaenoic acid (DHA) influences TLR4-driven proinflammatory and IFN1-regulated gene expression in a novel self-renewing murine fetal liver-derived macrophage (FLM) model. FLMs were cultured with 25 µM DHA or vehicle for 24 h, treated with modest concentration of LPS (20 ng/ml) for 1 and 4 h, and then subjected to scRNAseq using the 10X Chromium System. At 0 h (i.e., in the absence of LPS), DHA increased expression of genes associated with the NRF2 antioxidant response (e.g. Sqstm1, Hmox1, Chchd10) and metal homeostasis (e.g.Mt1, Mt2, Ftl1, Fth1), both of which are consistent with DHA-induced polarization of FLMs to a more anti-inflammatory phenotype. At 1 h post-LPS treatment, DHA inhibited LPS-induced cholesterol synthesis genes (e.g. Scd1, Scd2, Pmvk, Cyp51, Hmgcs1, and Fdps) which potentially could contribute to interference with TLR4-mediated inflammatory signaling. At 4 h post-LPS treatment, LPS-treated FLMs reflected a more robust inflammatory response including upregulation of proinflammatory cytokine (e.g. Il1a, Il1b, Tnf) and chemokine (e.g.Ccl2, Ccl3, Ccl4, Ccl7) genes as well as IFN1-regulated genes (e.g. Irf7, Mx1, Oasl1, Ifit1), many of which were suppressed by DHA. Using single-cell regulatory network inference and clustering (SCENIC) to identify gene expression networks, we found DHA modestly downregulated LPS-induced expression of NF-κB-target genes. Importantly, LPS induced a subset of FLMs simultaneously expressing NF-κB- and IRF7/STAT1/STAT2-target genes that were conspicuously absent in DHA-pretreated FLMs. Thus, DHA potently targeted both the NF-κB and the IFN1 responses. Altogether, scRNAseq generated a valuable dataset that provides new insights into multiple overlapping mechanisms by which DHA may transcriptionally or post-transcriptionally regulate LPS-induced proinflammatory and IFN1-driven responses in macrophages.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Lipopolissacarídeos/farmacologia , Interferons/metabolismo , NF-kappa B/metabolismo , Análise de Célula Única , Receptor 4 Toll-Like/metabolismo , Macrófagos , Citocinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Expressão Gênica
10.
Pharmacol Res Perspect ; 10(6): e01028, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36426895

RESUMO

Bleomycin-induced lung fibrosis is a debilitating disease, linked to high morbidity and mortality in chemotherapy patients. The MRTF/SRF transcription pathway has been proposed as a potential therapeutic target, as it is critical for myofibroblast differentiation, a hallmark of fibrosis. In human lung fibroblasts, the MRTF/SRF pathway inhibitor, CCG-257081, effectively decreased mRNA levels of downstream genes: smooth muscle actin and connective tissue growth factor, with IC50 s of 4 and 15 µM, respectively. The ability of CCG-257081 to prevent inflammation and fibrosis, measured via pulmonary collagen content and histopathology, was tested in a murine model of bleomycin-induced lung fibrosis. Animals were given intraperitoneal bleomycin for 4 weeks and concurrently dosed with CCG-257081 (0, 10, 30, and 100 mg/kg PO), a clinical anti-fibrotic (nintedanib) or the clinical standard of care (prednisolone). Mice treated with 100 mg/kg CCG-257081 gained weight vs. vehicle-treated control mice, while those receiving nintedanib and prednisolone lost significant weight. Hydroxyproline content and histological findings in tissue of animals on 100 mg/kg CCG-257081 were not significantly different from naive tissue, indicating successful prevention. Measures of tissue fibrosis were comparable between CCG-257081 and nintedanib, but only the MRTF/SRF inhibitor decreased plasminogen activator inhibitor-1 (PAI-1), a marker linked to fibrosis, in bronchoalveolar lavage fluid. In contrast, prednisolone led to marked increases in lung fibrosis by all metrics. This study demonstrates the potential use of MRTF/SRF inhibitors to prevent bleomycin-induced lung fibrosis in a clinically relevant model of the disease.


Assuntos
Bleomicina , Fibrose Pulmonar , Humanos , Animais , Camundongos , Bleomicina/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Inflamação , Fibroblastos , Prednisolona
11.
Front Immunol ; 13: 972108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341330

RESUMO

Autoimmune diseases can be triggered by environmental toxicants such as crystalline silica dust (cSiO2). Here, we characterized the dose-dependent immunomodulation and toxicity of the glucocorticoid (GC) prednisone in a preclinical model that emulates onset and progression of cSiO2-triggered lupus. Two cohorts of 6-wk-old female NZBWF1 mice were fed either control AIN-93G diet or one of three AIN-93G diets containing prednisone at 5, 15, or 50 mg/kg diet which span human equivalent oral doses (HED) currently considered to be low (PL; 5 mg/d HED), moderate (PM; 14 mg/d HED), or high (PH; 46 mg/d HED), respectively. At 8 wk of age, mice were intranasally instilled with either saline vehicle or 1 mg cSiO2 once weekly for 4 wk. The experimental plan was to 1) terminate one cohort of mice (n=8/group) 14 wk after the last cSiO2 instillation for pathology and autoimmunity assessment and 2) to maintain a second cohort (n=9/group) to monitor glomerulonephritis development and survival. Mean blood concentrations of prednisone's principal active metabolite, prednisolone, in mice fed PL, PM, and PH diets were 27, 105, 151 ng/ml, respectively, which are consistent with levels observed in human blood ≤ 12 h after single bolus treatments with equivalent prednisone doses. Results from the first cohort revealed that consumption of PM, but not PL diet, significantly reduced cSiO2-induced pulmonary ectopic lymphoid structure formation, nuclear-specific AAb production, inflammation/autoimmune gene expression in the lung and kidney, splenomegaly, and glomerulonephritis in the kidney. Relative to GC-associated toxicity, PM diet, but not PL diet, elicited muscle wasting, but these diets did not affect bone density or cause glucosuria. Importantly, neither PM nor PL diet improved latency of cSiO2-accelerated death. PH-fed mice in both cohorts displayed robust GC-associated toxicity including body weight loss, reduced muscle mass, and extensive glucosuria 7 wk after the final cSiO2 instillation requiring their early removal from the study. Taken together, our results demonstrate that while moderate doses of prednisone can reduce important pathological endpoints of cSiO2-induced autoimmunity in lupus-prone mice, such as upstream ectopic lymphoid structure formation, these ameliorative effects come with unwanted GC toxicity, and, crucially, none of these three doses extended survival time.


Assuntos
Doenças Autoimunes , Glomerulonefrite , Humanos , Camundongos , Feminino , Animais , Recém-Nascido , Autoimunidade , Prednisona/farmacologia , Glucocorticoides/farmacologia , Modelos Animais de Doenças , Dióxido de Silício/efeitos adversos , Doenças Autoimunes/induzido quimicamente
12.
Am J Respir Cell Mol Biol ; 67(5): 528-538, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816602

RESUMO

Ozone (O3)-induced respiratory toxicity varies considerably within the human population and across inbred mouse strains, indicative of gene-environment interactions (GxE). Though previous studies have identified several quantitative trait loci (QTL) and candidate genes underlying responses to O3 exposure, precise mechanisms of susceptibility remain incompletely described. We sought to update our understanding of the genetic architecture of O3 responsiveness using the Collaborative Cross (CC) recombinant inbred mouse panel. We evaluated hallmark O3-induced inflammation and injury phenotypes in 56 CC strains after exposure to filtered air or 2 ppm O3, and performed focused genetic analysis of variation in lung injury, as reflected by protein in lung lavage fluid. Strain-dependent responses to O3 were clear, and QTL mapping revealed two novel loci on Chr (Chromosomes) 10 (peak, 26.2 Mb; 80% confidence interval [CI], 24.6-43.6 Mb) and 15 (peak, 47.1 Mb; 80% CI, 40.2-54.9 Mb), the latter surpassing the 95% significance threshold. At the Chr 15 locus, C57BL/6J and CAST/EiJ founder haplotypes were associated with higher lung injury responses compared with all other CC founder haplotypes. With further statistical analysis and a weight of evidence approach, we delimited the Chr 15 QTL to an ∼2 Mb region containing 21 genes (10 protein coding) and nominated three candidate genes, namely Oxr1, Rspo2, and Angpt1. Gene and protein expression data further supported Oxr1 and Angpt1 as priority candidate genes. In summary, we have shown that O3-induced lung injury is modulated by genetic variation, identified two high priority candidate genes, and demonstrated the value of the CC for detecting GxE.


Assuntos
Lesão Pulmonar , Ozônio , Animais , Camundongos , Mapeamento Cromossômico , Cromossomos Humanos Par 15 , Camundongos de Cruzamento Colaborativo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Ozônio/toxicidade
14.
Front Public Health ; 10: 869041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692318

RESUMO

Inflammation is considered a key event in the pathology of many chronic diseases, including pulmonary and systemic particle induced effects. In addition, inflammation is now considered as the key response in standard setting for poorly-soluble low toxicity (PSLT) particles and also the critical endpoint to screen for in OECD based sub-chronic animal inhalation testing protocols. During Particles & Health 2021, an afternoon session was dedicated to the subject and a brief summary of the most important messages are summarized in this paper. In the first part of this session, two speakers (Prof. Lison and Dr Duffin) provided state of the art insight into different aspects and sequels to (persistent) inflammation as a protective or adverse response. Most recent insights on the role of different macrophage cell types were presented as well as perspectives and data provided by inflammatory pathways in humans, such as in asthma and COPD. A brief review of the expert workshop on PSLT particles focusing on the regulatory impact of using persistent inflammation as a key outcome was provided by Kevin Driscoll. The second part of the session focused on the outcomes that are associated with inflammation in animal studies, with an emphasis by Drs. Harkema (Michigan State) and Weber (Anapath) on cell proliferation and other pathologies that need to be considered when comparing human and animal responses, such as outcomes from 14- or 28 day inhalation studies used for specific target organ toxicity classification.


Assuntos
Inflamação , Pulmão , Administração por Inalação , Animais , Inflamação/metabolismo , Inflamação/patologia , Pulmão/patologia , Tamanho da Partícula
15.
Toxicol Sci ; 186(1): 149-162, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34865172

RESUMO

Utilizing a mobile laboratory located >300 km away from wildfire smoke (WFS) sources, this study examined the systemic immune response profile, with a focus on neuroinflammatory and neurometabolomic consequences, resulting from inhalation exposure to naturally occurring wildfires in California, Arizona, and Washington in 2020. After a 20-day (4 h/day) exposure period in a mobile laboratory stationed in New Mexico, WFS-derived particulate matter (WFPM) inhalation resulted in significant neuroinflammation while immune activity in the peripheral (lung, bone marrow) appeared to be resolved in C57BL/6 mice. Importantly, WFPM exposure increased cerebrovascular endothelial cell activation and expression of adhesion molecules (VCAM-1 and ICAM-1) in addition to increased glial activation and peripheral immune cell infiltration into the brain. Flow cytometry analysis revealed proinflammatory phenotypes of microglia and peripheral immune subsets in the brain of WFPM-exposed mice. Interestingly, endothelial cell neuroimmune activity was differentially associated with levels of PECAM-1 expression, suggesting that subsets of cerebrovascular endothelial cells were transitioning to resolution of inflammation following the 20-day exposure. Neurometabolites related to protection against aging, such as NAD+ and taurine, were decreased by WFPM exposure. Additionally, increased pathological amyloid-beta protein accumulation, a hallmark of neurodegeneration, was observed. Neuroinflammation, together with decreased levels of key neurometabolites, reflect a cluster of outcomes with important implications in priming inflammaging and aging-related neurodegenerative phenotypes.


Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/análise , Material Particulado/toxicidade , Fumaça/efeitos adversos , Estados Unidos
16.
Micron ; 153: 103193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929618

RESUMO

Biomaterials have a great potential to improve human health, however in vitro and in vivo studies are necessary to provide information on their efficacy and safety. This study reports on a comprehensive evaluation of core-shell electrospun fibers loaded with silver nanoparticles (Ag NP) where the delivery rate was controlled by different sizes of Ag NP and thermoresponsive poly(n-isopropylacrylamide) (PNIPAM) hydrogel particles. Fiber meshes also contain zinc oxide nanoparticles (ZnO NP), to improve pore structure for controlled release of Ag NP. In vitro cytotoxicity studies using cultured human A549 epithelial cells demonstrated that the ZnO NP component, which is known to cause cytotoxicity, of the fiber meshes did cause measurable cell death. In vitro antibacterial efficacy of the fiber meshes was shown with rapid and efficient growth inhibition in E. coli bacterial culture. Fiber meshes were implanted subcutaneously for up to 27 days in male and female C57BL/6 mice to evaluate the in vivo drug release and biocompatibility. Hyperspectral microscopy was used as an advanced tool to determine precise location of released Ag NP into the skin compared to the conventional tissue staining methods. Results suggested that Ag NP were continuously released over 27 days of implantation in mice. Hyperspectral imaging revealed that released Ag NP dispersed in the dermis of male mice, however, Ag NP accumulated in the hair follicles of female mice (Figure). Mice implanted with fiber meshes containing ZnO NP had better hair regrowth and wound healing, which was in contrast to in vitro cytotoxicity results. These findings suggest that these newly developed fiber meshes can have unique long-term release of drugs loaded in the fiber core and appear to be biocompatible. The differences in the sex-bias outcome suggest the opportunity for development of sex-specific drug delivery systems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Preparações Farmacêuticas , Animais , Antibacterianos/farmacologia , Escherichia coli , Feminino , Masculino , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Caracteres Sexuais , Prata/farmacologia
17.
Toxicol Lett ; 356: 21-32, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863859

RESUMO

Although exposure to ambient particulate matter (PM) is linked to asthma, the health effects of co-existing vapor-phase organic pollutants (vapor) and their combined effects with PM on this disease are poorly understood. We used a murine asthma model to test the hypothesis that exposure to vapor would enhance allergic sensitization and this effect would be further strengthened by co-existing PM. We found that vapor and PM each individually exerted adjuvant effects on OVA sensitization. Co-exposure to vapor and PM during sensitization further enhanced allergic lung inflammation and OVA-specific antibody production which was accompanied by pulmonary cytokine/chemokine milieu that favored T-helper 2 immunity (i.e. increased IL-4, downregulation of Il12a and Ifng, and upregulation of Ccl11 and Ccl8). TNFα, IL-6, Ccl12, Cxcl1 and detoxification/antioxidant enzyme responses in the lung were pollutant-dependent. Inhibition of lipopolysaccharide-induced IL-12 secretion from primary antigen-presenting dendritic cells correlated positively with vapor's oxidant potential. In conclusion, concurrent exposure to vapor and PM led to significantly exaggerated adjuvant effects on allergic lung inflammation which were more potent than that of each pollutant type alone. These findings suggest that the effects of multi-component air pollution on asthma may be significantly underestimated if research only focuses on a single air pollutant (e.g., PM).


Assuntos
Asma/induzido quimicamente , Citocinas/metabolismo , Hipersensibilidade/etiologia , Material Particulado/toxicidade , Compostos Orgânicos Voláteis/toxicidade , Animais , Citocinas/genética , Regulação para Baixo , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Tamanho da Partícula , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Th2 , Regulação para Cima
18.
Adv Genet (Hoboken) ; 3(1): 2100055, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36619349

RESUMO

Cancer cells produce heterogeneous extracellular vesicles (EVs) as mediators of intercellular communication. This study focuses on a novel method to image EV subtypes and their biodistribution in vivo. A red-shifted bioluminescence resonance energy transfer (BRET) EV reporter is developed, called PalmReNL, which allows for highly sensitive EV tracking in vitro and in vivo. PalmReNL enables the authors to study the common surface molecules across EV subtypes that determine EV organotropism and their functional differences in cancer progression. Regardless of injection routes, whether retro-orbital or intraperitoneal, PalmReNL positive EVs, isolated from murine mammary carcinoma cells, localized to the lungs. The early appearance of metastatic foci in the lungs of mammary tumor-bearing mice following multiple intraperitoneal injections of the medium and large EV (m/lEV)-enriched fraction derived from mammary carcinoma cells is demonstrated. In addition, the results presented here show that tumor cell-derived m/lEVs act on distant tissues through upregulating LC3 expression within the lung.

19.
Part Fibre Toxicol ; 18(1): 44, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911549

RESUMO

BACKGROUND: Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O3) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels. C57BL/6 mice were exposed to CB (10 mg/m3) and/or O3 (2 ppm) for 3 h (either a single exposure or four independent exposures). RNA was isolated from lungs and mRNA sequencing performed using the Illumina HiSeq. Lung pathology was evaluated by histology and immunohistochemistry. Electron transport chain (ETC) activities, electron flow, hydrogen peroxide production, and ATP content were assessed. RESULTS: Compared to individual exposure groups, co-exposure induced significantly greater neutrophils and protein levels in broncho-alveolar lavage fluid as well as a significant increase in mRNA expression of oxidative stress and inflammation related genes. Similarly, a significant increase in hydrogen peroxide production was observed after co-exposure. After single and four exposures, co-exposure revealed a greater number of differentially expressed genes (2251 and 4072, respectively). Of these genes, 1188 (single exposure) and 2061 (four exposures) were uniquely differentially expressed, with 35 mitochondrial ETC mRNA transcripts significantly impacted after four exposures. Both O3 and co-exposure treatment significantly reduced ETC maximal activity for complexes I (- 39.3% and - 36.2%, respectively) and IV (- 55.1% and - 57.1%, respectively). Only co-exposure reduced ATP Synthase activity (- 35.7%) and total ATP content (30%). Further, the ability for ATP Synthase to function is limited by reduced electron flow (- 25%) and translation of subunits, such as ATP5F1, following co-exposure. CONCLUSIONS: CB and O3 co-exposure cause unique transcriptomic changes in the lungs that are characterized by functional deficits to mitochondrial bioenergetics. Alterations to ATP Synthase function and mitochondrial electron flow underly a pathological adaptation to lung injury induced by co-exposure.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/toxicidade , Animais , Exposição por Inalação/efeitos adversos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Ozônio/toxicidade , Fuligem/toxicidade , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA