Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7998): 341-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297117

RESUMO

The Middle to Upper Palaeolithic transition in Europe is associated with the regional disappearance of Neanderthals and the spread of Homo sapiens. Late Neanderthals persisted in western Europe several millennia after the occurrence of H. sapiens in eastern Europe1. Local hybridization between the two groups occurred2, but not on all occasions3. Archaeological evidence also indicates the presence of several technocomplexes during this transition, complicating our understanding and the association of behavioural adaptations with specific hominin groups4. One such technocomplex for which the makers are unknown is the Lincombian-Ranisian-Jerzmanowician (LRJ), which has been described in northwestern and central Europe5-8. Here we present the morphological and proteomic taxonomic identification, mitochondrial DNA analysis and direct radiocarbon dating of human remains directly associated with an LRJ assemblage at the site Ilsenhöhle in Ranis (Germany). These human remains are among the earliest directly dated Upper Palaeolithic H. sapiens remains in Eurasia. We show that early H. sapiens associated with the LRJ were present in central and northwestern Europe long before the extinction of late Neanderthals in southwestern Europe. Our results strengthen the notion of a patchwork of distinct human populations and technocomplexes present in Europe during this transitional period.


Assuntos
Migração Humana , Animais , Humanos , Restos Mortais/metabolismo , DNA Antigo/análise , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Europa (Continente) , Extinção Biológica , Fósseis , Alemanha , História Antiga , Homem de Neandertal/classificação , Homem de Neandertal/genética , Homem de Neandertal/metabolismo , Proteômica , Datação Radiométrica , Migração Humana/história , Fatores de Tempo
2.
Sci Rep ; 13(1): 18345, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884544

RESUMO

High-throughput proteomic analysis of archaeological skeletal remains provides information about past fauna community compositions and species dispersals in time and space. Archaeological skeletal remains are a finite resource, however, and therefore it becomes relevant to optimize methods of skeletal proteome extraction. Ancient proteins in bone specimens can be highly degraded and consequently, extraction methods for well-preserved or modern bone might be unsuitable for the processing of highly degraded skeletal proteomes. In this study, we compared six proteomic extraction methods on Late Pleistocene remains with variable levels of proteome preservation. We tested the accuracy of species identification, protein sequence coverage, deamidation, and the number of post-translational modifications per method. We find striking differences in obtained proteome complexity and sequence coverage, highlighting that simple acid-insoluble proteome extraction methods perform better in highly degraded contexts. For well-preserved specimens, the approach using EDTA demineralization and protease-mix proteolysis yielded a higher number of identified peptides. The protocols presented here allowed protein extraction from ancient bone with a minimum number of working steps and equipment and yielded protein extracts within three working days. We expect further development along this route to benefit large-scale screening applications of relevance to archaeological and human evolution research.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/análise , Proteômica/métodos , Restos Mortais , Peptídeos , Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA