Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Pathogens ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668292

RESUMO

Wild birds are common hosts to numerous intracellular parasites such as single-celled eukaryotes of the family Eimeriidae (order Eucoccidiorida, phylum Apicomplexa). We investigated the infection rates, phylogeny, and pathogenicity of Isospora and Lankesterella parasites in wild and captive passerine birds. Blood and tissue samples of 815 wild and 15 deceased captive birds from Europe were tested using polymerase chain reaction and partial sequencing of the mitochondrial cytochrome b and cytochrome c oxidase I and the nuclear 18S rRNA gene. The infection rate for Lankesterella in wild birds was 10.7% compared to 5.8% for Isospora. Chromogenic in situ hybridization with probes targeting the parasites' 18S rRNA was employed to identify the parasites' presence in multiple organs, and hematoxylin-eosin staining was performed to visualize the parasite stages and assess associated lesions. Isospora parasites were mainly identified in the intestine, spleen, and liver. Extraintestinal tissue stages of Isospora were accompanied by predominantly lymphohistiocytic inflammation of varying severity. Lankesterella was most frequently detected in the spleen, lung, and brain; however, infected birds presented only a low parasite burden without associated pathological changes. These findings contribute to our understanding of Isospora and Lankesterella parasites in wild birds.

2.
Malar J ; 23(1): 70, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459560

RESUMO

BACKGROUND: Birds chronically infected with avian malaria parasites often show relapses of parasitaemia after latent stages marked by absence of parasites in the peripheral circulation. These relapses are assumed to result from the activation of dormant exo-erythrocytic stages produced during secondary (post-erythrocytic) merogony of avian Plasmodium spp. Yet, there is no morphological proof of persistent or dormant tissue stages in the avian host during latent infections. This study investigated persistence of Plasmodium relictum pSGS1 in birds with latent infections during winter, with the goal to detect presumed persisting tissue stages using a highly sensitive RNAscope® in situ hybridization technology. METHODS: Fourteen domestic canaries were infected with P. relictum pSGS1 by blood-inoculation in spring, and blood films examined during the first 4 months post infection, and during winter and spring of the following year. After parasitaemia was no longer detectable, half of the birds were dissected, and tissue samples investigated for persisting tissue stages using RNAscope ISH and histology. The remaining birds were blood-checked and dissected after re-appearance of parasitaemia, and their tissues equally examined. RESULTS: Systematic examination of tissues showed no exo-erythrocytic stages in birds exhibiting latent infections by blood-film microscopy, indicating absence of dormant tissue stages in P. relictum pSGS1-infected canaries. Instead, RNAscope ISH revealed rare P. relictum blood stages in capillaries of various tissues and organs, demonstrating persistence of the parasites in the microvasculature. Birds examined after re-appearance of parasitemia showed higher numbers of P. relictum blood stages in both capillaries and larger blood vessels, indicating replication during early spring and re-appearance in the peripheral circulation. CONCLUSIONS: The findings suggest that persistence of P. relictum pSGS1 during latent infection is mediated by continuous low-level erythrocytic merogony and possibly tissue sequestration of infected blood cells. Re-appearance of parasitaemia in spring seems to result from increased erythrocytic merogony, therefore representing recrudescence and not relapse in blood-inoculated canaries. Further, the study highlights strengths and limitations of the RNAscope ISH technology for the detection of rare parasite stages in tissues, providing directions for future research on persistence and tissue sequestration of avian malaria and related haemosporidian parasites.


Assuntos
Infecção Latente , Malária Aviária , Plasmodium , Animais , Canários/parasitologia , Malária Aviária/parasitologia , Plasmodium/genética , Aves , Hibridização In Situ , Parasitemia/parasitologia , Recidiva
3.
Parasite ; 31: 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334685

RESUMO

Avian haemosporidian parasites (order Haemosporida, phylum Apicomplexa) are blood and tissue parasites transmitted by blood-sucking dipteran insects. Three genera (Plasmodium, Haemoproteus and Leucocytozoon) have been most often found in birds, with over 270 species described and named in avian hosts based mainly on the morphological characters of blood stages. A broad diversity of Haemoproteus parasites remains to be identified and characterized morphologically and molecularly, especially those infecting birds of prey, an underrepresented bird group in haemosporidian parasite studies. The aim of this study was to investigate and identify Haemoproteus parasites from a large sample comprising accipitriform raptors of 16 species combining morphological and new molecular protocols targeting the cytb genes of this parasite group. This study provides morphological descriptions and molecular characterizations of two Haemoproteus species, H. multivacuolatus n. sp. and H. nisi Peirce and Marquiss, 1983. Haemoproteus parasites of this group were so far found in accipitriform raptors only and might be classified into a separate subgenus or even genus. Cytb sequences of these parasites diverge by more than 15% from those of all others known avian haemosporidian genera and form a unique phylogenetic clade. This study underlines the importance of developing new diagnostic tools to detect molecularly highly divergent parasites that might be undetectable by commonly used conventional tools.


Title: Nouveau clade phylogénétique de parasites de rapaces Accipitridae du genre Haemoproteus (Haemosporida, Haemoproteidae), avec description d'une nouvelle espèce d'Haemoproteus. Abstract: Les parasites hémosporidies aviaires (ordre Haemosporida, phylum Apicomplexa) sont des parasites sanguins et tissulaires transmis par des insectes diptères hématophages. Trois genres (Plasmodium, Haemoproteus et Leucocytozoon) ont été le plus souvent trouvés chez les oiseaux, avec plus de 270 espèces décrites et nommées chez les hôtes aviaires en fonction principalement des caractères morphologiques des stades sanguins. Une grande diversité des Haemoproteus reste à identifier et à caractériser morphologiquement et génétiquement, en particulier ceux qui infectent les oiseaux de proie, un groupe d'oiseaux sous-représenté dans les études sur les hémosporidies. Le but de cette étude était d'étudier et d'identifier les Haemoproteus à partir d'un large échantillon comprenant des rapaces accipitriformes de 16 espèces, en combinant des protocoles morphologiques et de nouveaux protocoles moléculaires ciblant les gènes cytb de ce groupe de parasites. Cette étude fournit des descriptions morphologiques et des caractérisations moléculaires de deux espèces d'Haemoproteus, H. multivacuolatus n. sp. et H. nisi Peirce and Marquiss, 1983. Les Haemoproteus de ce groupe n'ont jusqu'à présent été trouvés que chez les rapaces accipitriformes et pourraient être classés dans un sous-genre ou même un genre distinct. Les séquences cytb de ces parasites divergent de plus de 15 % de celles de tous les autres genres d'hémosporidies aviaires connus et forment un clade phylogénétique unique. Cette étude souligne l'importance de développer de nouveaux outils de diagnostic pour détecter des parasites moléculairement très divergents qui pourraient être indétectables par les outils conventionnels couramment utilisés.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Infecções Protozoárias em Animais , Aves Predatórias , Animais , Haemosporida/genética , Filogenia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
4.
Acta Trop ; 253: 107154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373526

RESUMO

Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan and highly diverse blood parasites of birds that have been neglected in avian medicine. However, recent discoveries based on molecular diagnostic markers show that these pathogens often cause marked damage to various internal organs due to exo-erythrocytic development, sometimes resulting in severe and even lethal avian haemoproteosis, including cerebral pathologies. Molecular markers are essential for haemoproteosis diagnostics, but the data is limited, particularly for parasites transmitted in tropical ecosystems. This study combined microscopic and molecular approaches to characterize Haemoproteus enucleator morphologically and molecularly. Blood samples were collected from the African pygmy kingfisher Ispidina picta in Cameroon, and the parasite was identified using morphological characters of gametocytes. The analysis of partial cytochrome b sequences (cytb) identified a new Haemoproteus lineage (hISPIC03), which was linked to the morphospecies H. enucleator. Illustrations of blood stages were provided and the phylogenetic analysis showed that the new lineage clustered with five other closely related lineages belonging to the same morphospecies (hALCLEU01, hALCLEU02, hALCLEU03, hISPIC01, and hALCQUA01), with a maximum genetic distance between these lineages of 1.5 % (7 bp difference) in the 478 bp cytb sequences. DNA haplotype network was developed and identified geographic and host distribution of all lineages belonging to H. enucleator group. These lineages were almost exclusively detected in African kingfishers from Gabon, Cameroon, South Africa, and Botswana. This study developed the molecular characterization of H. enucleator and provides opportunities for diagnostics of this pathogen at all stages of its life cycle, which remains undescribed in all its closely related lineages.


Assuntos
Doenças das Aves , Haemosporida , Infecções Protozoárias em Animais , Animais , Filogenia , Ecossistema , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Aves/parasitologia , Haemosporida/genética , Citocromos b/genética
5.
Int J Parasitol Parasites Wildl ; 23: 100905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38292244

RESUMO

Neglected avian blood parasites of the genus Haemoproteus (Haemoproteidae) have recently attracted attention due to the application of molecular diagnostic tools, which unravelled remarkable diversity of their exo-erythrocytic (or tissue) stages both regarding morphology and organ tropism levels. The development of haemoproteids might result in pathologies of internal organs, however the exo-erythrocytic development (EED) of most Haemoproteus species remains unknown. Seven individual birds - Curruca communis (1) and Phylloscopus trochilus (6) - with high gametocytaemia (between 1% and 24%) of Haemoproteus angustus n. sp. (hCWT7) and Haemoproteus palloris (lineage hWW1) were sampled in Lithuania, and their internal organs were examined extensively by parallel application of histology and chromogenic in situ hybridization methods. Tissue stages were apparently absent, suggesting that the parasitaemia was not accompanied by detectable tissue merogony. Haemoproteus angustus n. sp. was described and characterized morphologically and molecularly. Sexual process and ookinete development of the new species readily occurred in vitro, and a unique character for Haemoproteus parasites was discovered - the obligatory development of several tiny residual bodies, which were associated with intracellular transformation of both macrogametocytes and microgametocytes before their escape from the host cells and formation of gametes. A DNA haplotype network was constructed with lineages that cluster in one clade with the lineage hCWT7. This clade consists of lineages mostly found in Curruca birds, indicating specificity for birds of this genus. The lineage hCWT7 is mainly a parasite of C. communis. Most reports of this lineage came from Turkey, with only a few records in Europe, mostly in birds wintering in Africa where transmission probably occurs. This study highlights unexpected difficulties in the research of EED even when using sensitive molecular diagnostic tools and extends information about transformation in early stages of gametogenesis in haemosporidian parasites.

6.
Int J Parasitol ; 54(1): 1-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37598774

RESUMO

Avian haemosporidians of the genera Plasmodium, Haemoproteus, and Leucocytozoon are common blood parasites in wild birds all over the world. Despite their importance as pathogens potentially compromising host fitness and health, little is known about the exo-erythrocytic development of these parasites, particularly during co-infections which predominate in wildlife. This study aimed to address this issue using Haemoproteus parasites of Fringilla coelebs, a common bird species of the Western Palearctic and host to a variety of haemosporidian parasite lineages. Blood and tissue samples of 20 F. coelebs, positive for haemosporidians by blood film microscopy, were analysed by PCR and sequencing to determine cytochrome b lineages of the parasites. Tissue sections were examined for exo-erythrocytic stages by histology and in situ hybridization applying genus-, species-, and lineage-specific probes which target the 18S rRNA of the parasites. In addition, laser microdissection of tissue stages was performed to identify parasite lineages. Combined molecular results of PCR, laser microdissection, and in situ hybridization showed a high rate of co-infections, with Haemoproteus lineages dominating. Exo-erythrocytic meronts of five Haemoproteus spp. were described for the first known time, including Haemoproteus magnus hCCF6, Haemoproteus fringillae hCCF3, Haemoproteus majoris hCCF5, Haemoproteus sp. hROFI1, and Haemoproteus sp. hCCF2. Merogonic stages were observed in the vascular system, presenting a formerly unknown mode of exo-erythrocytic development in Haemoproteus parasites. Meronts and megalomeronts of these species were distinct regarding their morphology and organ distribution, indicating species-specific patterns of merogony and different host tissue tropism. New pathological aspects of haemoproteosis were reported. Furthermore, phylogenetic analysis of Haemoproteus spp. with regard to their exo-erythrocytic stages points towards separation of non-megalomeront-forming species from megalomeront-forming species, calling for further studies on exo-erythrocytic development of haemosporidian parasites to explore the phylogenetic character of this trait.


Assuntos
Doenças das Aves , Coinfecção , Haemosporida , Passeriformes , Infecções Protozoárias em Animais , Animais , Filogenia , Coinfecção/veterinária , Tropismo ao Hospedeiro , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Animais Selvagens
7.
Malar J ; 22(1): 232, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563610

RESUMO

BACKGROUND: The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS: The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS: Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS: Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.


Assuntos
Apicomplexa , Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Aves Canoras , Animais , Filogenia , RNA Ribossômico 18S/genética , Genes de RNAr , Doenças das Aves/parasitologia , Apicomplexa/genética , Plasmodium/genética , Mamíferos/genética , Infecções Protozoárias em Animais/parasitologia
8.
Parasit Vectors ; 16(1): 294, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620902

RESUMO

The zoonotic nematode Thelazia callipaeda infects the eyes of domestic and wild animals and uses canids as primary hosts. It was originally described in Asia, but in the last 20 years it has been reported in many European countries, where it is mainly transmitted by the drosophilid fruit fly Phortica variegata. We report the autochthonous occurrence of T. callipaeda and its vector P. variegata in Austria. Nematodes were collected from clinical cases and fruit flies were caught using traps, netting, and from the conjunctival sac of one dog. Fruit flies and nematodes were morphologically identified and a section of the mitochondrial cytochrome c oxidase subunit I gene (COI) was analysed. A DNA haplotype network was calculated to visualize the relation of the obtained COI sequences to published sequences. Additionally, Phortica spp. were screened for the presence of DNA of T. callipaeda by polymerase chain reaction. Thelazia callipaeda and P. variegata were identified in Burgenland, Lower Austria, and Styria. Thelazia callipaeda was also documented in Vienna and P. variegata in Upper Austria and South Tyrol, Italy. All T. callipaeda corresponded to haplotype 1. Twenty-two different haplotypes of P. variegata were identified in the fruit flies. One sequence was distinctly different from those of Phortica variegata and was more closely related to those of Phortica chi and Phortica okadai. Thelazia callipaeda could not be detected in any of the Phortica specimens.


Assuntos
Canidae , Aparelho Lacrimal , Thelazioidea , Animais , Cães , Áustria/epidemiologia , Filogenia , Itália/epidemiologia , Drosophila , Thelazioidea/genética
9.
Pathogens ; 12(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37513745

RESUMO

Haemoproteus parasites (Apicomplexa, Haemosporida) are widespread pathogens of birds, with a rich genetic (about 1900 lineages) and morphospecies (178 species) diversity. Nonetheless, their life cycles are poorly understood. The exo-erythrocytic stages of three Haemoproteus majoris (widespread generalist parasite) lineages have been previously reported, each in a different bird species. We aimed to further study and compare the development of five H. majoris lineages-hCCF5, hCWT4, hPARUS1, hPHSIB1, and hWW2-in a wider selection of natural avian hosts. A total of 42 individuals belonging to 14 bird species were sampled. Morphospecies and parasitemia were determined by microscopy of blood films, lineages by DNA-barcoding a 478 bp section of the cytochrome b gene, and exo-erythrocytic stages by histology and chromogenic in situ hybridization. The lineage hCWT4 was morphologically characterized as H. majoris for the first time. All lineage infections exclusively featured megalomeronts. The exo-erythrocytic stages found in all examined bird species were similar, particularly for the lineages hCCF5, hPARUS1, and hPHSIB1. Megalomeronts of the lineages hWW2 and hCWT4 were more similar to each other than to the former three lineages. The kidneys and gizzard were most often affected, followed by lungs and intestines; the site of development showed variation depending on the lineage.

10.
Parasit Vectors ; 16(1): 179, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269018

RESUMO

BACKGROUND: Hippoboscid flies (Diptera: Hippoboscidae), also known as louse flies or keds, are obligate blood-sucking ectoparasites of animals, and accidentally of humans. The potential role of hippoboscids as vectors of human and veterinary pathogens is being increasingly investigated, but the presence and distribution of infectious agents in louse flies is still unknown in parts of Europe. Here, we report the use of molecular genetics to detect and characterize vector-borne pathogens in hippoboscid flies infesting domestic and wild animals in Austria. METHODS: Louse flies were collected from naturally infested cattle (n = 25), sheep (n = 3), and red deer (n = 12) across Austria between 2015 and 2019. Individual insects were morphologically identified to species level and subjected to DNA extraction for molecular pathogen screening and barcoding. Genomic DNA from each louse fly was screened for Borrelia spp., Bartonella spp., Trypanosomatida, Anaplasmataceae, Filarioidea and Piroplasmida. Obtained sequences of Trypanosomatida and Bartonella spp. were further characterized by phylogenetic and haplotype networking analyses. RESULTS: A total of 282 hippoboscid flies corresponding to three species were identified: Hippobosca equina (n = 62) collected from cattle, Melophagus ovinus (n = 100) from sheep and Lipoptena cervi (n = 120) from red deer (Cervus elaphus). Molecular screening revealed pathogen DNA in 54.3% of hippoboscids, including infections with single (63.39%), two (30.71%) and up to three (5.90%) distinct pathogens in the same individual. Bartonella DNA was detected in 36.9% of the louse flies. Lipoptena cervi were infected with 10 distinct and previously unreported Bartonella sp. haplotypes, some closely associated with strains of zoonotic potential. DNA of trypanosomatids was identified in 34% of hippoboscids, including the first description of Trypanosoma sp. in H. equina. Anaplasmataceae DNA (Wolbachia spp.) was detected only in M. ovinus (16%), while < 1% of the louse flies were positive for Borrelia spp. and Filarioidea. All hippoboscids were negative for Piroplasmida. CONCLUSIONS: Molecular genetic screening confirmed the presence of several pathogens in hippoboscids infesting domestic and wild ruminants in Austria, including novel pathogen haplotypes of zoonotic potential (e.g. Bartonella spp.) and the first report of Trypanosoma sp. in H. equina, suggesting a potential role of this louse fly as vector of animal trypanosomatids. Experimental transmission studies and expanded monitoring of hippoboscid flies and hippoboscid-associated pathogens are warranted to clarify the competence of these ectoparasites as vectors of infectious agents in a One-Health context.


Assuntos
Anaplasmataceae , Anoplura , Bartonella , Cervos , Dípteros , Piroplasmida , Humanos , Animais , Ovinos , Bovinos , Cervos/parasitologia , Áustria/epidemiologia , Filogenia , Ruminantes , Bartonella/genética , Anaplasmataceae/genética
11.
Parasitol Res ; 122(1): 333-340, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36394671

RESUMO

Enterocytozoon bieneusi is an obligate intracellular pathogen that infects livestock, companion animals, and wildlife and has the potential to cause severe diarrhea especially in immunocompromised humans. In the underlying study, fecal samples from 177 calves with diarrhea and 174 adult cows originating from 70 and 18 farms, respectively, in Austria were examined for the presence of E. bieneusi by polymerase chain reaction targeting the Internal Transcribed Spacer 1 (ITS1) region. All positive samples were further sequenced for genotype determination. Overall, sixteen of the 351 (4.6%) samples were positive for E. bieneusi, two of the 174 samples from cows (1.2%) and 14 of the 177 samples from calves (7.9%). In total, four genotypes, J (n = 2), I (n = 12), BEB4 (n = 3), and BEB8 (n = 1), were identified. The uncorrected p-distance between the four ITS1 lineages (344 bp) ranges from 0.3% to 2.9%. The lineages differ by 1 bp (I and J), 2 bp (J and BEB4), and 3 bp (I and BEB4), respectively, and BEB8 differs by 7 to 10 bp from the latter three lineages. Two of the E. bieneusi-positive calves showed an infection with two different genotypes. E. bieneusi occurred significantly more often in calves > 3 weeks (8/59) than in calves ≤ 3 weeks (6/118), respectively (p = 0.049). Calves with a known history of antimicrobial treatment (50 of 177 calves) shed E. bieneusi significantly more often than untreated calves (p = 0.012). There was no statistically significant difference in E. bieneusi shedding in calves with or without a medical history of antiparasitic treatment (p = 0.881). Calves showing a co-infection with Eimeria spp. shed E. bieneusi significantly more often than uninfected calves (p = 0.003). To our knowledge, this is the first report of E. bieneusi in cattle in Austria. Cattle should be considered as a reservoir for human infection since potentially zoonotic E. bieneusi genotypes were detected.


Assuntos
Doenças dos Bovinos , Enterocytozoon , Microsporidiose , Humanos , Feminino , Animais , Bovinos , Enterocytozoon/genética , Áustria/epidemiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Microsporidiose/epidemiologia , Microsporidiose/veterinária , Microsporidiose/parasitologia , Fezes/parasitologia , Genótipo , Diarreia/epidemiologia , Diarreia/veterinária , Filogenia , China , Prevalência
12.
Parasit Vectors ; 15(1): 457, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482478

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is recognized as one of the most prevalent zoonotic diseases in Bosnia and Herzegovina. However, no systemic investigation of the genetic diversity of Echinococcus granulosus sensu lato circulating among animals and humans in the country has been performed to date. METHODS: In this preliminary study, we analysed one cyst each from 36 sheep, 27 cattle, 27 pigs, 11 wild boars and 16 human patients for amplification and partial sequencing of the adenosine triphosphate 6 (atp6) and cytochrome c oxidase 1 (cox1) genes. The host species, fertility rate and organ cyst location were recorded for each subject involved in the study. RESULTS: Overall, the atp6 gene was successfully amplified and sequenced from 110 samples, while 96 of the PCRs for cox1 were positive. Three zoonotic genotypes of E. granulosus sensu stricto (G1 and G3) and Echinococcus canadensis (G7) were identified in our isolates based on analyses of the atp6 gene. These genotypes were represented by 11 different genetic variants (haplotypes), six of which were identified for the first time in the present study. CONCLUSIONS: This study demonstrates, for the first time, that CE in Bosnia and Herzegovina is predominantly caused by E. granulosus sensu stricto and E. canadensis clusters, which exhibited a lower genetic diversity compared to isolates from other European countries. Further molecular studies employing other mitochondrial and nuclear genes are required to better understand the transmission cycles of E. granulosus sensu stricto among intermediate and definitive hosts in the country.


Assuntos
Cistos , Equinococose , Echinococcus granulosus , Echinococcus , Humanos , Ovinos , Bovinos , Animais , Suínos , Echinococcus/genética , Equinococose/veterinária , Genótipo , Variação Genética
13.
Animals (Basel) ; 12(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077935

RESUMO

Avian haemosporidian parasites (Haemosporida, Apicomplexa) are globally distributed and infect birds of many orders. These pathogens have been much investigated in domestic and wild passeriform birds, in which they are relatively easy to access. In birds belonging to other orders, including owls (order Strigiformes), these parasites have been studied fragmentarily. Particularly little is known about the exo-erythrocytic development of avian haemosporidians. The goal of this study was to gain new knowledge about the parasites infecting owls in Europe and investigate their exo-erythrocytic stages. Tissue samples of 121 deceased owls were collected in Austria and Lithuania, and examined using polymerase chain reactions (PCR), histology, and chromogenic in situ hybridization (CISH). PCR-based diagnostics showed a total prevalence of 73.6%, revealing two previously unreported Haemoproteus and five novel Leucocytozoon lineages. By CISH and histology, meronts of several Leucocytozoon lineages (lASOT06, lSTAL5, lSTAL7) were discovered in the brains, heart muscles, and kidneys of infected birds. Further, megalomeronts of Haemoproteus syrnii (lineage hSTAL2) were discovered. This study contributes new knowledge to a better understanding of the biodiversity of avian haemosporidian parasites infecting owls in Europe, provides information on tissue stages of the parasites, and calls for further research of these under-investigated pathogens relevant to bird health.

14.
Int J Parasitol Parasites Wildl ; 19: 128-137, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36119442

RESUMO

European wildcats (Felis silvestris silvestris) have not been investigated in large numbers for blood-associated pathogens in Germany, because wildcats, being a protected species, may not be hunted, and the collection of samples is therefore difficult. Thus, spleen tissue and whole blood from 96 wildcats from Germany found as roadkill or dead from other causes in the years 1998-2020 were examined for the prevalence of blood associated pathogens using molecular genetic tools. PCR was used to screen for haemotrophic Mycoplasma spp., Hepatozoon spp., Cytauxzoon spp., Bartonella spp., Filarioidea, Anaplasmataceae, and Rickettsiales, and positive samples were subsequently sequenced. Phylogenetic analyses were performed for Mycoplasma spp. and Hepatozoon spp. by calculating phylogenetic trees and DNA haplotype networks. The following pathogens were found: Candidatus Mycoplasma haematominutum (7/96), Mycoplasma ovis (1/96), Hepatozoon silvestris (34/96), Hepatozoon felis (6/96), Cytauxzoon europaeus (45/96), and Bartonella spp. (3/96). This study elucidates the prevalence of blood-associated pathogens in wildcats from Germany.

15.
Malar J ; 21(1): 14, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986864

RESUMO

BACKGROUND: The order Accipitriformes comprises the largest group of birds of prey with 260 species in four families. So far, 21 haemosporidian parasite species have been described from or reported to occur in accipitriform birds. Only five of these parasite species have been characterized molecular genetically. The first part of this study involved molecular genetic screening of accipitriform raptors from Austria and Bosnia-Herzegovina and the first chromogenic in situ hybridization approach targeting parasites in this host group. The aim of the second part of this study was to summarize the CytB sequence data of haemosporidian parasites from accipitriform raptors and to visualize the geographic and host distribution of the lineages. METHODS: Blood and tissue samples of 183 accipitriform raptors from Austria and Bosnia-Herzegovina were screened for Plasmodium, Haemoproteus and Leucocytozoon parasites by nested PCR, and tissue samples of 23 PCR-positive birds were subjected to chromogenic in situ hybridization using genus-specific probes targeting the parasites' 18S rRNAs. All published CytB sequence data from accipitriform raptors were analysed, phylogenetic trees were calculated, and DNA haplotype network analyses were performed with sequences from clades featuring multiple lineages detected in this host group. RESULTS: Of the 183 raptors from Austria and Bosnia-Herzegovina screened by PCR and sequencing, 80 individuals (44%) were infected with haemosporidian parasites. Among the 39 CytB lineages detected, 18 were found for the first time in the present study. The chromogenic in situ hybridization revealed exo-erythrocytic tissue stages of Leucocytozoon parasites belonging to the Leucocytozoon toddi species group in the kidneys of 14 infected birds. The total number of CytB lineages recorded in accipitriform birds worldwide was 57 for Leucocytozoon, 25 for Plasmodium, and 21 for Haemoproteus. CONCLUSION: The analysis of the DNA haplotype networks allowed identifying numerous distinct groups of lineages, which have not yet been linked to morphospecies, and many of them likely belong to yet undescribed parasite species. Tissue stages of Leucocytozoon parasites developing in accipitriform raptors were discovered and described. The majority of Leucocytozoon and Haemoproteus lineages are specific to this host group, but most Plasmodium lineages were found in birds of other orders. This might indicate local transmission from birds kept at the same facilities (raptor rescue centres and zoos), likely resulting in abortive infections. To clarify the taxonomic and systematic problems, combined morphological and molecular genetic analyses on a wider range of accipitriform host species are needed.


Assuntos
Doenças das Aves/parasitologia , Falconiformes , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Animais , Áustria , Bósnia e Herzegóvina , Haemosporida/classificação , Haemosporida/fisiologia , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Aves Predatórias , Especificidade da Espécie
16.
Parasitol Res ; 120(12): 4061-4066, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34661730

RESUMO

Rumen flukes have received growing veterinary attention in western and central Europe during the past two decades because of an increase in prevalence of infection in cattle and sheep, including cases of severe clinical disease. Historically, rumen fluke infections in Europe were assumed to be caused mainly by Paramphistomum cervi (or species, which were later considered to be synonymous with P. cervi), but more recently molecular studies demonstrated Calicophoron daubneyi to be the predominating species. For the present investigation, adult rumen flukes isolated from 23 cattle originating from ten farms in Germany (Saxony [1], Baden-Württemberg [4], Bavaria [5]) and one farm in Austria (Tyrol) were analyzed to establish partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and the complete sequence of the nuclear internal transcribed spacer 2 (ITS2). Flukes of five animals (dairy cows from three farms in Bavaria) were determined as P. leydeni, and flukes of 18 animals (dairy cows or cattle from cow-calf operations from eight farms in Saxony [1], Baden-Württemberg [4], Bavaria [2], and Tyrol [1]) were identified as C. daubneyi. Based on the molecular analysis of adult rumen flukes collected from cattle, the results of this investigation confirm the common occurrence of C. daubneyi in Germany and reveal the first definitive findings of P. leydeni in Germany and C. daubneyi in Austria.


Assuntos
Doenças dos Bovinos , Paramphistomatidae , Trematódeos , Infecções por Trematódeos , Animais , Áustria/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Código de Barras de DNA Taxonômico , Feminino , Alemanha/epidemiologia , Paramphistomatidae/genética , Rúmen , Ovinos , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária
17.
Animals (Basel) ; 11(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34679985

RESUMO

Veterinarians reported cases of cutaneous bleeding in cattle in Austria in the spring and summer of 2020. It was our goal to confirm the tentative diagnosis of parafilariosis by identifying Parafilaria bovicola in exudate samples using molecular methods for the first time in Austria. We asked veterinarians in the field to collect exudate from typical lesions on cattle. We performed polymerase chain reactions (PCRs) and sequenced a 674-bp section of the mitochondrial cytochrome oxidase subunit I in all positive samples. Overall, in 57 of 86 samples, P. bovicola was confirmed by PCR in cattle from Lower Austria, Upper Austria, Styria, Salzburg, Carinthia, and Tyrol. Sequencing detected four different haplotypes or genotypes, respectively, indicating multiple routes of introduction. We conclude that parafilariosis has spread in Austria and we expect that the number of reports of clinical signs and losses due to carcass damage will increase in the future.

18.
Malar J ; 20(1): 417, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34688278

RESUMO

BACKGROUND: Haemosporidioses are common in birds and their manifestations range from subclinical infections to severe disease, depending on the involved parasite and bird species. Clinical haemosporidioses are often observed in non-adapted zoo or aviary birds, whereas in wild birds, particularly passerines, haemosporidian infections frequently seem to be asymptomatic. However, a recent study from Austria showed pathogenic haemosporidian infections in common blackbirds due to high parasite burdens of Plasmodium matutinum LINN1, a common parasite in this bird species, suggesting that virulent infections also occur in natural hosts. Based on these findings, the present study aimed to explore whether and to what extent other native bird species are possibly affected by pathogenic haemosporidian lineages, contributing to avian morbidity. METHODS: Carcasses of passerine birds and woodpeckers were collected during a citizen science-based survey for avian mortality in Austria, from June to October 2020. Tissue samples were taken and examined for haemosporidian parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon by nested PCR and sequencing the mitochondrial cytb barcode region, histology, and chromogenic in situ hybridization applying genus-specific probes. RESULTS: From over 160 dead bird reportings, 83 carcasses of 25 avian species were submitted for investigation. Overall haemosporidian infection rate was 31%, with finches and tits prevailing species counts and infections. Sequence analyses revealed 17 different haplotypes (4 Plasmodium, 4 Haemoproteus, 9 Leucocytozoon), including 4 novel Leucocytozoon lineages. Most infected birds presented low parasite burdens in the peripheral blood and tissues, ruling out a significant contribution of haemosporidian infections to morbidity or death of the examined birds. However, two great tits showed signs of avian malaria, suggesting pathogenic effects of the detected species Plasmodium relictum SGS1 and Plasmodium elongatum GRW06. Further, exo-erythrocytic tissue stages of several haemosporidian lineages are reported. CONCLUSIONS: While suggesting generally little contribution of haemosporidian infections to mortality of the investigated bird species, the findings indicate a possible role of certain haemosporidian lineages in overall clinical manifestation, either as main causes or as concurrent disease agents. Further, the study presents new data on exo-erythrocytic stages of previously reported lineages and shows how citizen science can be used in the field of haemosporidian research.


Assuntos
Doenças das Aves/mortalidade , Ciência do Cidadão , Haemosporida/fisiologia , Infecções Protozoárias em Animais/epidemiologia , Aves Canoras , Animais , Animais Selvagens , Áustria/epidemiologia , Doenças das Aves/parasitologia , Prevalência , Infecções Protozoárias em Animais/parasitologia
20.
Animals (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070187

RESUMO

Recent studies confirmed that some Hepatozoon-like blood parasites (Apicomplexa) of birds are closely related to the amphibian parasite Lankesterella minima. Little is known about the biology of these pathogens in birds, including their distribution, life cycles, specificity, vectors, and molecular characterization. Using blood samples of 641 birds from 16 species, we (i) determined the prevalence and molecular diversity of Lankesterella parasites in naturally infected birds; (ii) investigated the development of Lankesterella kabeeni in laboratory-reared mosquitoes, Culex pipiens forma molestus and Aedes aegypti; and (iii) tested experimentally the susceptibility of domestic canaries, Serinus canaria, to this parasite. This study combined molecular and morphological diagnostic methods and determined 11% prevalence of Lankesterella parasites in Acrocephalidae birds; 16 Lankesterella lineages with a certain degree of host specificity and two new species (Lankesterella vacuolata n. sp. and Lankesterella macrovacuolata n. sp.) were found and characterized. Lankesterella kabeeni (formerly Hepatozoon kabeeni) was re-described. Serinus canaria were resistant after various experimental exposures. Lankesterella sporozoites rapidly escaped from host cells in vitro. Sporozoites persisted for a long time in infected mosquitoes (up to 42 days post exposure). Our study demonstrated a high diversity of Lankesterella parasites in birds, and showed that several avian Hepatozoon-like parasites, in fact, belong to Lankesterella genus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA