Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(12): e2303928, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38291861

RESUMO

Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as in the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality is systematically examined using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.


Assuntos
Endométrio , Células Endoteliais , Endométrio/citologia , Endométrio/irrigação sanguínea , Endométrio/metabolismo , Humanos , Feminino , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Polaridade Celular/fisiologia , Microvasos/citologia , Microvasos/fisiologia , Matriz Extracelular/metabolismo , Células Cultivadas
2.
J Biomed Mater Res A ; 112(3): 336-347, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37861296

RESUMO

Current treatments for craniomaxillofacial (CMF) defects motivate the design of instructive biomaterials that can promote osteogenic healing of complex bone defects. We report methods to promote in vitro osteogenesis of human mesenchymal stem cells (hMSCs) within a model mineralized collagen scaffold via the incorporation of ascorbic acid (vitamin C), a key factor in collagen biosynthesis and bone mineralization. An addition of 5 w/v% ascorbic acid into the base mineralized collagen scaffold significantly changes key morphology characteristics including porosity, macrostructure, and microstructure. This modification promotes hMSC metabolic activity, ALP activity, and hMSC-mediated deposition of calcium and phosphorous. Additionally, the incorporation of ascorbic acid influences osteogenic gene expression (BMP-2, RUNX2, COL1A2) and delays the expression of genes associated with osteoclast activity and bone resorption (OPN, CTSK), though it reduces the secretion of OPG. Together, these findings highlight ascorbic acid as a relevant component for mineralized collagen scaffold design to promote osteogenic differentiation and new bone formation for improved CMF outcomes.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Alicerces Teciduais/química , Ácido Ascórbico/farmacologia , Colágeno/química , Diferenciação Celular , Células Cultivadas
3.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961315

RESUMO

Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, we systematically examine the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.

4.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014316

RESUMO

Contemporary tissue engineering efforts often seek to use mesenchymal stem cells (MSCs) due to their potential to differentiate to various tissue-specific cells and generate a pro-regenerative secretome. While MSC differentiation and therapeutic potential can differ as a function of matrix environment, it may also be widely influenced as a function of donor-to-donor variability. Further, effects of passage number and donor sex may further convolute the identification of clinically effective MSC-mediated regeneration technologies. We report efforts to adapt a well-defined mineralized collagen scaffold platform to study the influence of MSC proliferation and osteogenic potential as a function of passage number and donor sex. Mineralized collagen scaffolds broadly support MSC osteogenic differentiation and regenerative potency in the absence of traditional osteogenic supplements for a wide range of MSCs (rabbit, rat, porcine, human). We obtained a library of bone marrow and adipose tissue derived stem cells to examine donor-variability of regenerative potency in mineralized collagen scaffolds. MSCs displayed reduced proliferative capacity as a function of passage duration. Further, MSCs showed significant sex-based differences. Notably, MSCs from male donors displayed significantly higher metabolic activity and proliferation while MSCs from female donor displayed significantly higher osteogenic response via increased alkaline phosphate activity, osteoprotegerin release, and mineral formation in vitro. Our study highlights the essentiality of considering MSC donor sex and culture expansion in future studies of biomaterial regenerative potential.

5.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014332

RESUMO

Acquired drug resistance in glioblastoma (GBM) presents a major clinical challenge and is a key factor contributing to abysmal prognosis, with less than 15 months median overall survival. Aggressive chemotherapy with the frontline therapeutic, temozolomide (TMZ), ultimately fails to kill residual highly invasive tumor cells after surgical resection and radiotherapy. Here, we report a three-dimensional (3D) engineered model of acquired TMZ resistance using two isogenically-matched sets of GBM cell lines encapsulated in gelatin methacrylol hydrogels. We benchmark response of TMZ-resistant vs. TMZ-sensitive GBM cell lines within the gelatin-based extracellular matrix platform and further validate drug response at physiologically relevant TMZ concentrations. We show changes in drug sensitivity, cell invasion, and matrix-remodeling cytokine production as the result of acquired TMZ resistance. This platform lays the foundation for future investigations targeting key elements of the GBM tumor microenvironment to combat GBM's devastating impact by advancing our understanding of GBM progression and treatment response to guide the development of novel treatment strategies. Teaser: A hydrogel model to investigate the impact of acquired drug resistance on functional response in glioblastoma.

6.
Acta Biomater ; 172: 249-259, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806375

RESUMO

Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. Repairing craniomaxillofacial bone defects, which are often large and irregularly shaped, requires close conformal contact between implant and defect margins to aid healing. While mineralized collagen scaffolds can promote mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, their mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients. STATEMENT OF SIGNIFICANCE: Biomaterial strategies for (craniomaxillofacial) bone regeneration are often limited by the size and complex geometry of the defects. Voronoi structures are open-cell foams with tunable mechanical properties which have primarily been used computationally. We describe generative design strategies to create Voronoi foams via 3D-printing then embed them into an osteogenic mineralized collagen scaffold to form a multi-scale composite biomaterial. Voronoi structures have predictable and tailorable moduli, permit stain localization to defined regions of the composite, and permit conformal fitting to effect margins to aid surgical practicality and improve host-biomaterial interactions. Multi-scale composites based on Voronoi foams represent an adaptable design approach to address significant challenges to large-scale bone repair.


Assuntos
Materiais Biocompatíveis , Osteogênese , Humanos , Materiais Biocompatíveis/farmacologia , Porosidade , Alicerces Teciduais/química , Colágeno/química , Impressão Tridimensional
7.
Int J Oncol ; 63(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37654190

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor affecting adults and remains incurable. The mitochondrial coiled­coil­helix­coiled­coil­helix domain­containing protein 2 (CHCHD2) has been demonstrated to mediate mitochondrial respiration, nuclear gene expression and cell migration; however, evidence of this in GBM is lacking. In the present study, it was hypothesized that CHCHD2 may play a functional role in U87 GBM cells expressing the constitutively active epidermal growth factor receptor variant III (EGFRvIII). The amplification of the CHCHD2 gene was found to be associated with a decreased patient overall and progression­free survival. The CHCHD2 mRNA levels were increased in high­vs. low­grade glioma, IDH­wt GBMs, and in tumor vs. non­tumor tissue. Additionally, CHCHD2 protein expression was greatest in invasive, EGFRvIII­expressing patient­derived samples. The CRISPR­Cas9­mediated knockout of CHCHD2 in EGFRvIII­expressing U87 cells resulted in an altered mitochondrial respiration and glutathione status, in decreased cell growth and invasion under both normoxic and hypoxic conditions, and in an enhanced sensitivity to cytotoxic agents. CHCHD2 was distributed in both the mitochondria and nuclei of U87 and U87vIII cells, and the U87vIII cells exhibited a greater nuclear expression of CHCHD2 compared to isogenic U87 cells. Incubation under hypoxic conditions, serum starvation and the reductive unfolding of CHCHD2 induced the nuclear accumulation of CHCHD2 in both cell lines. Collectively, the findings of the present study indicate that CHCHD2 mediates a variety of GBM characteristics, and highlights mitonuclear retrograde signaling as a pathway of interest in GBM cell biology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Encefálicas/patologia , Hipóxia , Mitocôndrias/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição
8.
bioRxiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37732275

RESUMO

Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. We are developing biomaterials for craniomaxillofacial bone defects that are often large and irregularly shaped. These require close conformal contact between implant and defect margins to aid healing. While we have identified a mineralized collagen scaffold that promotes mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, its mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients.

10.
Adv Healthc Mater ; 12(17): e2202750, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36863404

RESUMO

The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) is a synthetic, tunable material that promotes in vivo skull regeneration. In this work, the effects of MC-GAG phosphate content on the surrounding microenvironment and osteoprogenitor differentiation are investigated. This study finds that MC-GAG exhibits a temporal relationship with soluble phosphate with elution early in culture shifting to absorption with or without differentiating primary bone marrow-derived human mesenchymal stem cells (hMSCs). The intrinsic phosphate content of MC-GAG is sufficient to stimulate osteogenic differentiation of hMSCs in basal growth media without the addition of exogenous phosphate in a manner that can be severely reduced, but not eliminated, by knockdown of the sodium phosphate transporters PiT-1 or PiT-2. The contributions of PiT-1 and PiT-2 to MC-GAG-mediated osteogenesis are nonredundant but also nonadditive, suggestive that the heterodimeric form is essential to its activity. These findings indicate that the mineral content of MC-GAG alters phosphate concentrations within a local microenvironment resulting in osteogenic differentiation of progenitor cells via both PiT-1 and PiT-2.


Assuntos
Osteogênese , Fosfatos , Humanos , Fosfatos/farmacologia , Alicerces Teciduais , Colágeno , Diferenciação Celular , Glicosaminoglicanos , Células Cultivadas
11.
Biomaterials ; 294: 122015, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36701999

RESUMO

The design of biomaterials to regenerate bone is likely to increasingly require modifications that reduce bacterial attachment and biofilm formation as infection during wound regeneration can significantly impede tissue repair and typically requires surgical intervention to restart the healing process. Further, much research on infection prevention in bone biomaterials has focused on modeling of non-resorbable metal alloy materials, whereas an expanding direction of bone regeneration has focused on development of bioresorbable materials. This represents a need for the prevention and understanding of infection in resorbable biomaterials. Here, we investigate the ability of a mineralized collagen biomaterial to natively resist infection and examine how the addition of manuka honey, previously identified as an antimicrobial agent, affects gram positive and negative bacterial colonization and mesenchymal stem cell osteogenesis and vasculature formation. We incorporate manuka honey into these scaffolds via either direct fabrication into the scaffold microarchitecture or via soaking the scaffold in a solution of manuka honey after fabrication. Direct incorporation results in a change in the surface characteristics and porosity of mineralized collagen scaffolds. Soaking scaffolds in honey concentrations higher than 10% had significant negative effects on mesenchymal stem cell metabolic activity. Soaking or incorporating 5% honey had no impact on endothelial cell tube formation. Although solutions of 5% honey reduced metabolic activity of mesenchymal stem cells, MSC-seeded scaffolds displayed increased calcium and phosphorous mineral formation, osteoprotegerin release, and alkaline phosphatase activity. Bacteria cultured on mineralized collagen scaffolds demonstrated surfaces covered in bacteria and no method of preventing infection, and using 10 times the minimal inhibitory concentration of antibiotics did not completely kill bacteria within the mineralized collagen scaffolds, indicating bioresorbable scaffold materials may act to shield bacteria from antibiotics. The addition of 5% manuka honey to scaffolds was not sufficient to prevent P. aeruginosa attachment or consistently reduce the activity of methicillin resistant staphylococcus aureus, and concentrations above 7% manuka honey are likely necessary to impact MRSA. Together, our results suggest bioresorbable scaffolds may create an environment conducive to bacterial growth, and potential trade-offs exist for the incorporation of low levels of honey in scaffolds to increase osteogenic potential of osteoprogenitors while high-levels of honey may be sufficient to reduce gram positive or negative bacteria activity but at the cost of reduced osteogenesis.


Assuntos
Mel , Células-Tronco Mesenquimais , Staphylococcus aureus Resistente à Meticilina , Osteogênese , Alicerces Teciduais , Colágeno/metabolismo , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia
12.
Biomater Adv ; 145: 213262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565669

RESUMO

Custom synthesis of extracellular matrix (ECM)-inspired materials for condition-specific reconstruction has emerged as a potentially translatable regenerative strategy. In skull defect reconstruction, nanoparticulate mineralized collagen glycosaminoglycan scaffolds (MC-GAG) have demonstrated osteogenic and anti-osteoclastogenic properties, culminating in the ability to partially heal in vivo skull defects without the addition of exogenous growth factors or progenitor cell loading. In an effort to reduce catabolism during early skull regeneration, we fabricated a composite material (MCGO) of MC-GAG and recombinant osteoprotegerin (OPG), an endogenous anti-osteoclastogenic decoy receptor. In the presence of differentiating osteoprogenitors, MCGO demonstrated an additive effect with endogenous OPG limited to the first 14 days of culture with total eluted and scaffold-bound OPG exceeding that of MC-GAG. Functionally, MCGO exhibited similar osteogenic properties as MC-GAG, however, MCGO significantly reduced maturation and resorptive activities of primary human osteoclasts. In a rabbit skull defect model, MCGO scaffold-reconstructed defects displayed higher mineralization as well as increased hardness and microfracture resistance compared to non-OPG functionalized MC-GAG scaffolds. The current work suggests that MCGO is a development in the goal of reaching a materials-based strategy for skull regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteoprotegerina , Animais , Humanos , Coelhos , Osteoprotegerina/metabolismo , Alicerces Teciduais , Células-Tronco Mesenquimais/metabolismo , Colágeno/farmacologia , Crânio/cirurgia , Crânio/metabolismo , Cicatrização
13.
Front Bioeng Biotechnol ; 10: 1034701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466348

RESUMO

Craniomaxillofacial (CMF) bone injuries present a major surgical challenge and cannot heal naturally due to their large size and complex topography. We are developing a mineralized collagen scaffold that mimics extracellular matrix (ECM) features of bone. These scaffolds induce in vitro human mesenchymal stem cell (hMSC) osteogenic differentiation and in vivo bone formation without the need for exogenous osteogenic supplements. Here, we seek to enhance pro-regenerative potential via inclusion of placental-derived products in the scaffold architecture. The amnion and chorion membranes are distinct components of the placenta that each have displayed anti-inflammatory, immunomodulatory, and osteogenic properties. While potentially a powerful modification to our mineralized collagen scaffolds, the route of inclusion (matrix-immobilized or soluble) is not well understood. Here we compare the effect of introducing amnion and chorion membrane matrix versus soluble extracts derived from these membranes into the collagen scaffolds on scaffold biophysical features and resultant hMSC osteogenic activity. While inclusion of amnion and chorion matrix into the scaffold microarchitecture during fabrication does not influence their porosity, it does influence compression properties. Incorporating soluble extracts from the amnion membrane into the scaffold post-fabrication induces the highest levels of hMSC metabolic activity and equivalent mineral deposition and elution of the osteoclast inhibitor osteoprotegerin (OPG) compared to the conventional mineralized collagen scaffolds. Mineralized collagen-amnion composite scaffolds elicited enhanced early stage osteogenic gene expression (BGLAP, BMP2), increased immunomodulatory gene expression (CCL2, HGF, and MCSF) and increased angiogenic gene expression (ANGPT1, VEGFA) in hMSCs. Mineralized collagen-chorion composite scaffolds promoted immunomodulatory gene expression in hMSCs (CCL2, HGF, and IL6) while unaffecting osteogenic gene expression. Together, these findings suggest that mineralized collagen scaffolds modified using matrix derived from amnion and chorion membranes represent a promising environment conducive to craniomaxillofacial bone repair.

14.
Adv Sci (Weinh) ; 9(31): e2201888, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36109186

RESUMO

Glioblastoma (GBM) tumor cells are found in the perivascular niche microenvironment and are believed to associate closely with the brain microvasculature. However, it is largely unknown how the resident cells of the perivascular niche, such as endothelial cells, pericytes, and astrocytes, influence GBM tumor cell behavior and disease progression. A 3D in vitro model of the brain perivascular niche developed by encapsulating brain-derived endothelial cells, pericytes, and astrocytes in a gelatin hydrogel is described. It is shown that brain perivascular stromal cells, namely pericytes and astrocytes, contribute to vascular architecture and maturation. Cocultures of patient-derived GBM tumor cells with brain microvascular cells are used to identify a role for pericytes and astrocytes in establishing a perivascular niche environment that modulates GBM cell invasion, proliferation, and therapeutic response. Engineered models provide unique insight regarding the spatial patterning of GBM cell phenotypes in response to a multicellular model of the perivascular niche. Critically, it is shown that engineered perivascular models provide an important resource to evaluate mechanisms by which intercellular interactions modulate GBM tumor cell behavior, drug response, and provide a framework to consider patient-specific disease phenotypes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Células Endoteliais/patologia , Encéfalo , Processos Neoplásicos , Proliferação de Células , Células Estromais/patologia , Microambiente Tumoral
15.
ACS Biomater Sci Eng ; 8(9): 3819-3830, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35994527

RESUMO

The endometrium undergoes profound changes in tissue architecture and composition, both during the menstrual cycle as well as in the context of pregnancy. Dynamic remodeling processes of the endometrial extracellular matrix (ECM) are a major element of endometrial homeostasis, including changes across the menstrual cycle. A critical element of this tissue microenvironment is the endometrial basement membrane, a specialized layer of proteins that separates the endometrial epithelium from the underlying endometrial ECM. Bioengineering models of the endometrial microenvironment that present an appropriate endometrial ECM and basement membrane may provide an improved environment to study endometrial epithelial cell (EEC) function. Here, we exploit a tiered approach using two-dimensional high-throughput microarrays and three-dimensional gelatin hydrogels to define patterns of EEC attachment and cytokeratin 18 (CK18) expression in response to combinations of endometrial basement membrane proteins. We identify combinations (collagen IV + tenascin C; collagen I + collagen III; hyaluronic acid + tenascin C; collagen V; collagen V + hyaluronic acid; collagen III; and collagen I) that facilitate increased EEC attachment, increased CK18 intensity, or both. We also identify significant EEC mediated remodeling of the methacrylamide-functionalized gelatin matrix environment via analysis of nascent protein deposition. Together, we report efforts to tailor the localization of basement membrane-associated proteins and proteoglycans in order to investigate tissue-engineered models of the endometrial microenvironment.


Assuntos
Gelatina , Hidrogéis , Colágeno/metabolismo , Endométrio/metabolismo , Células Epiteliais , Matriz Extracelular/metabolismo , Feminino , Gelatina/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Queratina-18/metabolismo , Gravidez , Tenascina/metabolismo
16.
Anal Chem ; 94(35): 11999-12007, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36001072

RESUMO

Efforts to expand hematopoietic stem and progenitor cells (HSPCs) in vitro are motivated by their use in the treatment of leukemias and other blood and immune system diseases. The combinations of extrinsic cues within the hematopoietic stem cell (HSC) niche that lead to HSC fate decisions remain unknown. New noninvasive and location-specific techniques are needed to enable identification of the differentiation stages of individual hematopoietic cells on biomaterial microarray screening platforms that minimize the usage of rare HSCs. Here, we show that a combination of Raman microspectroscopy and partial least-squares discriminant analysis (PLS-DA) enables the location-specific identification of individual living cells from the six most immature hematopoietic cell populations, HSC, multipotent progenitor (MPP)-1, MPP-2, MPP-3, common myeloid progenitor, and common lymphoid progenitor. Better than 90% accuracy was achieved. We show that the accuracy of this differentiation stage identification was based on spectral features associated with cell biochemistries. This work establishes that PLS-DA can capture the subtle spectral variations between as many as six closely related cell populations in the presence of potentially significant within-population spectral variation. This noninvasive approach can be used to screen HSC fate decisions elicited by extrinsic cues within biomaterial microarray screening platforms.


Assuntos
Materiais Biocompatíveis , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular , Análise Discriminante , Camundongos , Análise Multivariada
17.
Adv Healthc Mater ; 11(19): e2200471, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905390

RESUMO

Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.


Assuntos
Condrócitos , Lâmina de Crescimento , Adolescente , Materiais Biocompatíveis/metabolismo , Criança , Condrócitos/metabolismo , Progressão da Doença , Lâmina de Crescimento/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Engenharia Tecidual
18.
Am J Vet Res ; 83(6)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35544415

RESUMO

OBJECTIVE: To evaluate feline injection site-associated sarcoma (FISAS) and oral squamous cell carcinoma (FOSCC) cells in 3-D hydrogel-based cell cultures to determine chemosensitivity to carboplatin at concentrations comparable to those eluted from carboplatin-impregnated calcium sulfate hemihydrate (C-ICSH) beads. SAMPLE: 2 immortalized cell lines, each from a histologically confirmed primary FISAS and FOSCC. PROCEDURES: Hydrogels (10% wt/vol) were formed via UV exposure from methacrylamide-functionalized gelatin dissolved in PBSS. For each cell line, approximately 100,000 cells were encapsulated per hydrogel. Three cell-seeded 3-D hydrogels were evaluated for each carboplatin concentration (0, 150, 300, 450, and 600 µM) across 3 experiments. Drug efficacy was assessed by luminescence assay 72 hours after treatment. Growth of tumor cells treated with 300 µM or 600 µM carboplatin was evaluated using live-cell morphology imaging and confocal microscopy at 3, 7, and 14 days after treatment. RESULTS: Mean half-maximal inhibitory concentration (IC50) values for FISAS and FOSCC cells ranged from 123 to 171 µM and 155 to 190 µM, respectively, based on luminescence assay. Viability at 3, 7, and 14 days for both cell lines at 300 µM carboplatin was 50%, 25%, and 5% and at 600 µM carboplatin was 25%, 10%, and < 5%. CLINICAL RELEVANCE: 3-D hydrogel cell culture systems supported growth of feline tumor cells for determination of in vitro chemosensitivity. IC50s of each cell line were within the range of carboplatin concentrations eluted from C-ICSH beads. Cells from FISAS and FOSCC cell lines treated with carboplatin showed dose-dependent and time-dependent decreases in viability.


Assuntos
Carcinoma de Células Escamosas , Doenças do Gato , Neoplasias Bucais , Sarcoma , Animais , Sulfato de Cálcio , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/veterinária , Doenças do Gato/tratamento farmacológico , Gatos , Linhagem Celular , Hidrogéis , Neoplasias Bucais/veterinária , Sarcoma/tratamento farmacológico , Sarcoma/veterinária
19.
Am J Vet Res ; 83(6)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35544417

RESUMO

OBJECTIVE: To evaluate feline injection site-associated sarcoma (FISAS) and oral squamous cell carcinoma (FOSCC) cells in 3-D hydrogel-based cell cultures to determine chemosensitivity to carboplatin at concentrations comparable to those eluted from carboplatin-impregnated calcium sulfate hemihydrate (C-ICSH) beads. SAMPLE: 2 immortalized cell lines, each from a histologically confirmed primary FISAS and FOSCC. PROCEDURES: Hydrogels (10% wt/vol) were formed via UV exposure from methacrylamide-functionalized gelatin dissolved in PBSS. For each cell line, approximately 100,000 cells were encapsulated per hydrogel. Three cell-seeded 3-D hydrogels were evaluated for each carboplatin concentration (0, 150, 300, 450, and 600 µM) across 3 experiments. Drug efficacy was assessed by luminescence assay 72 hours after treatment. Growth of tumor cells treated with 300 µM or 600 µM carboplatin was evaluated using live-cell morphology imaging and confocal microscopy at 3, 7, and 14 days after treatment. RESULTS: Mean half-maximal inhibitory concentration (IC50) values for FISAS and FOSCC cells ranged from 123 to 171 µM and 155 to 190 µM, respectively, based on luminescence assay. Viability at 3, 7, and 14 days for both cell lines at 300 µM carboplatin was 50%, 25%, and 5% and at 600 µM carboplatin was 25%, 10%, and < 5%. CLINICAL RELEVANCE: 3-D hydrogel cell culture systems supported growth of feline tumor cells for determination of in vitro chemosensitivity. IC50s of each cell line were within the range of carboplatin concentrations eluted from C-ICSH beads. Cells from FISAS and FOSCC cell lines treated with carboplatin showed dose-dependent and time-dependent decreases in viability.


Assuntos
Carcinoma de Células Escamosas , Doenças do Gato , Neoplasias Bucais , Sarcoma , Animais , Sulfato de Cálcio , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/veterinária , Doenças do Gato/tratamento farmacológico , Gatos , Linhagem Celular , Hidrogéis , Neoplasias Bucais/veterinária , Sarcoma/tratamento farmacológico , Sarcoma/veterinária
20.
Cell Mol Bioeng ; 15(2): 175-191, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35401843

RESUMO

Introduction: Trophoblast invasion is a complex biological process necessary for establishment of pregnancy; however, much remains unknown regarding what signaling factors coordinate the extent of invasion. Pregnancy-specific glycoproteins (PSGs) are some of the most abundant circulating trophoblastic proteins in maternal blood during human pregnancy, with maternal serum concentrations rising to as high as 200-400 µg/mL at term. Methods: Here, we employ three-dimensional (3D) trophoblast motility assays consisting of trophoblast spheroids encapsulated in 3D gelatin hydrogels to quantify trophoblast outgrowth area, viability, and cytotoxicity in the presence of PSG1 and PSG9 as well as epidermal growth factor and Nodal. Results: We show PSG9 reduces trophoblast motility whereas PSG1 increases motility. Further, we assess bulk nascent protein production by encapsulated spheroids to highlight the potential of this approach to assess trophoblast response (motility, remodeling) to soluble factors and extracellular matrix cues. Conclusions: Such models provide an important platform to develop a deeper understanding of early pregnancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA