Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0005224, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38466091

RESUMO

Pacific oysters (Magallana gigas, a.k.a. Crassostrea gigas), the most widely farmed oysters, are under threat from climate change and emerging pathogens. In part, their resilience may be affected by their microbiome, which, in turn, may be influenced by ocean warming and acidification. To understand these impacts, we exposed early-development Pacific oyster spat to different temperatures (18°C and 24°C) and pCO2 levels (800, 1,600, and 2,800 µatm) in a fully crossed design for 3 weeks. Under all conditions, the microbiome changed over time, with a large decrease in the relative abundance of potentially pathogenic ciliates (Uronema marinum) in all treatments with time. The microbiome composition differed significantly with temperature, but not acidification, indicating that Pacific oyster spat microbiomes can be altered by ocean warming but is resilient to ocean acidification in our experiments. Microbial taxa differed in relative abundance with temperature, implying different adaptive strategies and ecological specializations among microorganisms. Additionally, a small proportion (~0.2% of the total taxa) of the relatively abundant microbial taxa were core constituents (>50% occurrence among samples) across different temperatures, pCO2 levels, or time. Some taxa, including A4b bacteria and members of the family Saprospiraceae in the phyla Chloroflexi (syn. Chloroflexota) and Bacteroidetes (syn. Bacteroidota), respectively, as well as protists in the genera Labyrinthula and Aplanochytrium in the class Labyrinthulomycetes, and Pseudoperkinsus tapetis in the class Ichthyosporea were core constituents across temperatures, pCO2 levels, and time, suggesting that they play an important, albeit unknown, role in maintaining the structural and functional stability of the Pacific oyster spat microbiome in response to ocean warming and acidification. These findings highlight the flexibility of the spat microbiome to environmental changes.IMPORTANCEPacific oysters are the most economically important and widely farmed species of oyster, and their production depends on healthy oyster spat. In turn, spat health and productivity are affected by the associated microbiota; yet, studies have not scrutinized the effects of temperature and pCO2 on the prokaryotic and eukaryotic microbiomes of spat. Here, we show that both the prokaryotic and, for the first time, eukaryotic microbiome of Pacific oyster spat are surprisingly resilient to changes in acidification, but sensitive to ocean warming. The findings have potential implications for oyster survival amid climate change and underscore the need to understand temperature and pCO2 effects on the microbiome and the cascading effects on oyster health and productivity.


Assuntos
Crassostrea , Água do Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Mudança Climática , Oceanos e Mares
2.
Ecol Lett ; 27(1): e14337, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069515

RESUMO

The effect of climate warming on community composition is expected to be contingent on competitive outcomes, yet approaches to projecting ecological outcomes often rely on measures of density-independent performance across temperatures. Recent theory suggests that the temperature response of competitive ability differs in shape from that of population growth rate. Here, we test this hypothesis empirically and find thermal performance curves of competitive ability in aquatic microorganisms to be systematically left-shifted and flatter compared to those of exponential growth rate. The minimum resource requirement for growth, R*-an inverse indicator of competitive ability-changes with temperature following a U-shaped pattern in all four species tested, contrasting from their left-skewed density-independent growth rate thermal performance curves. Our results provide new evidence that exploitative competitive success is highest at temperatures that are sub-optimal for growth, suggesting performance estimates of density-independent variables might underpredict performance in cooler competitive environments.


Assuntos
Mudança Climática , Fitoplâncton , Temperatura , Crescimento Demográfico , Clima
3.
Ecology ; 105(1): e4205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947006

RESUMO

Current latitudinal diversity gradient (LDG) meta-analyses have failed to distinguish one of the most widespread marine habitats, the intertidal zone, as a separate system despite it having unique abiotic challenges and spatially compressed stress gradients that affect the distribution and abundance of resident species. We address this issue by revisiting published literature and datasets on LDGs since 1911 to explore LDG patterns and their strengths in intertidal benthic, subtidal benthic, and pelagic realms and discuss the importance of recognizing intertidal ecosystems as distinct. Rocky shorelines were the most studied intertidal ecosystem encompassing 64.2% of intertidal LDG studies, and 62.9% of studies focused on assemblage composition, while the remaining 37.1% of studies were taxa specific. While our analyses confirmed LDGs in subtidal benthic and pelagic realms, with a decrease in richness toward the poles, we found no consistent intertidal LDGs in any ocean or coastline across hemispheres or biodiversity unit. Analyzing intertidal and subtidal zones as separate systems increased the strength of subtidal benthic LDGs relative to analyses combining these systems. We demonstrate that in intertidal ecosystems across oceans in both hemispheres, a latitudinal decrease in species richness is not readily apparent, which stands in contrast with significant LDG patterns found in the subtidal realm. Intertidal habitat heterogeneity, regional environmental variability and biological interactions can create species-rich hot spots independent of latitude, which may functionally outweigh a typical latitudinal decline in species richness. Although previous work has shown weaker LDGs in benthic than pelagic systems, we demonstrate that this is caused by combining subtidal and intertidal benthic ecosystems into a single benthic category. Thus, we propose that subtidal and intertidal ecosystems cannot be combined into one entity as the physical and biological parameters controlling ecosystem processes are vastly different, even among intertidal ecosystems. Thus, the intertidal zone offers a unique model system in which hypotheses can be further tested to better understand the complex processes underlying LDGs.


Assuntos
Biodiversidade , Ecossistema , Oceanos e Mares
4.
Ecology ; 104(12): e4183, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786322

RESUMO

Climate change manifests unevenly across space and time and produces complex patterns of stress for ecological systems. Species can also show substantial among-population variability in response to environmental change across their geographic range due to evolutionary processes. Explanatory factors or their proxies, such as temperature and latitude, help parse these sources of environmental and intraspecific variability; however, overemphasizing latitudinal trends can obscure the role of local environmental conditions in shaping population vulnerability to climate change. Focusing on the geographic center of a species range to disentangle latitude, we test the hypothesis that populations from warmer regions of a species range are more vulnerable to ocean warming. We conducted a mesocosm experiment and field reciprocal transplant with four populations of a marine snail, Nucella lamellosa, from two regions in British Columbia, Canada, that differ in thermal characteristics: the Central Coast, a cool region, and the Strait of Georgia, one of the warmest regions of this species' range and one that is warming faster than the Central Coast. Populations from the Strait of Georgia experienced growth reductions at contemporary summertime seawater temperatures in the laboratory and showed stark reductions in survival and growth under future seawater conditions and when outplanted at their native transplant sites. This indicates a high vulnerability to ocean warming, especially given the faster rate of ocean warming in this region. In contrast, populations from the cooler Central Coast demonstrated high performance at contemporary seawater temperatures and high growth and survival in projected future seawater temperatures and at their native outplant sites. Given their position within the geographic center of N. lamellosa's range, extirpation events in the vulnerable Strait of Georgia populations could compromise connectivity within the metapopulation and lead to gaps across this species' range. Overall, our study supports predictions that populations from warm regions of species ranges are more vulnerable to environmental warming, suggests that the Strait of Georgia and other inland or coastal seas could be focal points for climate change effects and ecological transformation, and emphasizes the importance of analyzing climate change vulnerability in the context of regional environmental data and throughout a species' range.


Assuntos
Mudança Climática , Ecossistema , Temperatura , Água do Mar , Colúmbia Britânica
5.
J Therm Biol ; 114: 103549, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37244058

RESUMO

Benthic invertebrate predators play a key role in top-down trophic regulation in intertidal ecosystems. While the physiological and ecological consequences of predator exposure to high temperatures during summer low tides are increasingly well-studied, the effects of cold exposure during winter low tides remain poorly understood. To address this knowledge gap, we measured the supercooling points, survival, and feeding rates of three intertidal predator species in British Columbia, Canada - the sea stars Pisaster ochraceus and Evasterias troschelii and the dogwhelk Nucella lamellosa - in response to exposure to sub-zero air temperatures. Overall, we found that all three predators exhibited evidence of internal freezing at relatively mild sub-zero temperatures, with sea stars exhibiting an average supercooling point of -2.50 °C, and the dogwhelk averaging approximately -3.99 °C. None of the tested species are strongly freeze tolerant, as evidenced by moderate-to-low survival rates after exposure to -8 °C air. All three predators exhibited significantly reduced feeding rates over a two-week period following a single 3-h sublethal (-0.5 °C) exposure event. We also quantified variation in predator body temperature among thermal microhabitats during winter low tides. Predators that were found at the base of large boulders, on the sediment, and within crevices had higher body temperatures during winter low tides, as compared to those situated in other microhabitats. However, we did not find evidence of behavioural thermoregulation via selective microhabitat use during cold weather. Since these intertidal predators are less freeze tolerant than their preferred prey, winter low temperature exposures can have important implications for organism survival and predator-prey dynamics across thermal gradients at both local (habitat-driven) and geographic (climate-driven) scales.


Assuntos
Ecossistema , Gastrópodes , Animais , Temperatura , Clima , Temperatura Alta , Comportamento Predatório
6.
Elife ; 122023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039622

RESUMO

Ongoing climate change has caused rapidly increasing temperatures and an unprecedented decline in seawater pH, known as ocean acidification. Increasing temperatures are redistributing species toward higher and cooler latitudes that are most affected by ocean acidification. While the persistence of intertidal species in cold environments is related to their capacity to resist sub-zero air temperatures, studies have never considered the interacting impacts of ocean acidification and freeze stress on species survival and distribution. Here, a full-factorial experiment was used to study whether ocean acidification increases mortality in subtidal Mytilus trossulus and subtidal M. galloprovincialis, and intertidal M. trossulus following sub-zero air temperature exposure. We examined physiological processes behind variation in freeze tolerance using 1H NMR metabolomics, analyses of fatty acids, and amino acid composition. We show that low pH conditions (pH = 7.5) significantly decrease freeze tolerance in both intertidal and subtidal populations of Mytilus spp. Under current day pH conditions (pH = 7.9), intertidal M. trossulus was more freeze tolerant than subtidal M. trossulus and subtidal M. galloprovincialis. Conversely, under low pH conditions, subtidal M. trossulus was more freeze tolerant than the other mussel categories. Differences in the concentration of various metabolites (cryoprotectants) or in the composition of amino acids and fatty acids could not explain the decrease in survival. These results suggest that ocean acidification can offset the poleward range expansions facilitated by warming and that reduced freeze tolerance could result in a range contraction if temperatures become lethal at the equatorward edge.


Assuntos
Mytilus , Água do Mar , Animais , Temperatura , Ecossistema , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Mytilus/metabolismo
7.
Nat Commun ; 14(1): 727, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759624

RESUMO

In late June 2021 a heatwave of unprecedented magnitude impacted the Pacific Northwest region of Canada and the United States. Many locations broke all-time maximum temperature records by more than 5 °C, and the Canadian national temperature record was broken by 4.6 °C, with a new record temperature of 49.6 °C. Here, we provide a comprehensive summary of this event and its impacts. Upstream diabatic heating played a key role in the magnitude of this anomaly. Weather forecasts provided advanced notice of the event, while sub-seasonal forecasts showed an increased likelihood of a heat extreme with lead times of 10-20 days. The impacts of this event were catastrophic, including hundreds of attributable deaths across the Pacific Northwest, mass-mortalities of marine life, reduced crop and fruit yields, river flooding from rapid snow and glacier melt, and a substantial increase in wildfires-the latter contributing to landslides in the months following. These impacts provide examples we can learn from and a vivid depiction of how climate change can be so devastating.

8.
Glob Chang Biol ; 29(1): 165-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36016505

RESUMO

Heatwave frequency and intensity will increase as climate change progresses. Intertidal sessile invertebrates, which often form thermally benign microhabitats for associated species, are vulnerable to thermal stress because they have minimal ability to behaviourally thermoregulate. Understanding what factors influence the mortality of biogenic species and how heatwaves might impact their ability to provide habitat is critical. Here, we characterize the community associated with the thatched barnacle, Semibalanus cariosus (Pallass, 1788), in British Columbia (BC), Canada. Then, we investigate what site-level and plot-level environmental factors explained variations in barnacle mortality resulting from an unprecedented regional heatwave in BC, Canada. Furthermore, we used a manipulative shading experiment deployed prior to the heatwave to examine the effect of thermal stress on barnacle survival and recruitment and the barnacle-associated community. We identified 50 taxa inhabiting S. cariosus beds, with variations in community composition between sites. Site-scale variables and algal canopy cover did not predict S. cariosus mortality, but patch-scale variation in substratum orientation did, with more direct solar irradiance corresponding with higher barnacle mortality. The shading experiment demonstrated that S. cariosus survival, barnacle recruitment, and invertebrate community diversity were higher under shades where substratum temperatures were lower. Associated community composition also differed between shaded and non-shaded plots, suggesting S. cariosus was not able to fully buffer acute thermal stress for its associated community. While habitat provisioning by intertidal foundation species is an important source of biodiversity, these species alone may not be enough to prevent substantial community shifts following extreme heatwaves. As heatwaves become more frequent and severe, they may further reduce diversity via the loss of biogenic habitat, and spatial variation in these impacts may be substantial.


Assuntos
Thoracica , Animais , Ecossistema , Invertebrados , Biodiversidade , Mudança Climática
9.
Biofouling ; 38(8): 837-851, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36317602

RESUMO

Vessel hull-fouling is responsible for most bioinvasion events in the marine environment, yet it lacks regulation in most countries. Although experts advocate a preventative approach, research efforts on pre-arrival processes are limited. The performance of mobile epifauna during vessel transport was evaluated via laboratory simulations, using the well-known invasive Japanese skeleton shrimp (Caprella mutica), and its native congener C. laeviuscula as case study. The invader did not possess any advantage in terms of inherent resistance to drag. Instead, its performance was conditioned by the complexity of secondary substrate. Dislodgement risk was significantly reduced when sessile fouling basibionts were added, which provided refugia and boosted the probability of C. mutica remaining attached from 7 to 65% in flow exposure trials. Interestingly, the invader exhibited significantly higher exploratory tendency and motility than its native congener at zero-flow conditions. Implications in terms of en-route survivorship, invasion success and macrofouling management are discussed.


Assuntos
Biofilmes , Navios
11.
Trends Ecol Evol ; 37(1): 20-29, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593256

RESUMO

Marine heatwaves (MHWs), discrete but prolonged periods of anomalously warm seawater, can fundamentally restructure marine communities and ecosystems. Although our understanding of these events has improved in recent years, key knowledge gaps hinder our ability to predict how MHWs will affect patterns of biodiversity. Here, we outline a functional trait approach that enables a better understanding of which species and communities will be most vulnerable to MHWs, and how the distribution of species and composition of communities are likely to shift through time. Our perspective allows progress toward unifying extreme events and longer term environmental trends as co-drivers of ecological change, with the incorporation of species traits into our predictions allowing for a greater capacity to make management decisions.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Fenótipo
12.
Ecology ; 102(10): e03478, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270786

RESUMO

Invasive species often exhibit disproportionately strong negative effects in their introduced range compared to their native range, and much research has been devoted to understanding the role of shared evolutionary history, or lack thereof, in driving these differences. Less studied is whether introduced species, particularly those that are important as facilitators in their native range, have persistent positive effects in their invaded range despite a lack of a shared evolutionary history with the invaded community. Here, we manipulated the density of a habitat-forming facilitator, the high intertidal acorn barnacle Balanus glandula, factorially with herbivore density in its native range (Bluestone Point, British Columbia, Canada) and invaded range (Punta Ameghino, Chubut Province, Argentina) to determine how this facilitator differentially affects associated species at these two locations. Given that high intertidal species at Punta Ameghino (PA) are evolutionarily naïve to barnacles, we predicted that the positive effects of B. glandula at PA would be absent or weak compared to those at Bluestone Point (BP). However, we found that B. glandula had an equally positive effect on herbivore biomass at PA compared to BP, possibly because the moisture-retaining properties of barnacle bed habitats are particularly important in seasonally dry Patagonia. Barnacle presence indirectly decreased ephemeral algal cover at BP by increasing grazer pressure, but barnacles instead facilitated ephemeral algae at PA. In contrast, B. glandula increased perennial algal cover at BP, but generally decreased perennial algal cover at PA, likely due to differences in dominant algal morphology. Though our experiment was limited to one location on each continent, our results suggest that shared evolutionary history may not be a prerequisite for strong facilitation to occur, but rather that the nature and strength of novel species interactions are determined by the traits of associated species and the environment in which they occur.


Assuntos
Ecossistema , Thoracica , Animais , Colúmbia Britânica , Herbivoria , Espécies Introduzidas
13.
Proc Biol Sci ; 288(1947): 20202968, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33757343

RESUMO

Understanding and predicting responses of ectothermic animals to temperature are essential for decision-making and management. The thermal performance curve (TPC), which quantifies the thermal sensitivity of traits such as metabolism, growth and feeding rates in laboratory conditions, is often used to predict responses of wild populations. However, central assumptions of this approach are that TPCs are relatively static between populations and that curves measured under stable temperature conditions can predict performance under variable conditions. We test these assumptions using two latitudinally matched populations of the ecosystem engineer Mytilus trossulus that differ in their experienced temperature variability regime. We acclimated each population in a range of constant or fluctuating temperatures for six weeks and measured a series of both short term (feeding rate, byssal thread production) and long-term (growth, survival) metrics to test the hypothesis that performance in fluctuating temperatures can be predicted from constant temperatures. We find that this was not true for any metric, and that there were important interactions with the population of origin. Our results emphasize that responses to fluctuating conditions are still poorly understood and suggest caution must be taken in the use of TPCs generated under constant temperature conditions for the prediction of wild population responses.


Assuntos
Mytilus , Aclimatação , Animais , Ecossistema , Temperatura
14.
New Phytol ; 229(4): 2311-2323, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33037641

RESUMO

Extreme environments have driven the evolution of some of the most inspiring adaptations in nature. In the intertidal zone of wave-swept shores, organisms face physical forces comparable to hurricanes and must further endure thermal and desiccation stress during low tides, compromising their physiological and biomechanical performance. We examine how these multiple stressors have influenced the evolution of tissue properties during desiccation using eight phylogenetically independent pairs of intertidal and subtidal macrophytes. Intertidal species generally lost water more slowly than their subtidal counterparts, presumably as an adaption to regular emersion. Under partial desiccation, breaking force, strength, and extensibility of intertidal species generally exceeded those of subtidal species, although important differences existed among phylogenetic pairs. This was often true even when subtidal relatives resisted greater forces or were more extensible under full hydration. The interacting effects of mechanical forces and desiccation during low tide are likely a major selective agent in determining macrophyte performance and fitness. Overall, we found that lineages that have independently evolved to occupy the wave-swept intertidal have converged on performance metrics that are likely to be adaptive to the interacting stressors associated with their extreme niches.


Assuntos
Aclimatação , Adaptação Fisiológica , Filogenia
15.
J Exp Biol ; 223(Pt 24)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33214314

RESUMO

Freezing is an extreme stress to living cells, and so freeze-tolerant animals often accumulate protective molecules (termed cryoprotectants) to prevent the cellular damage caused by freezing. The bay mussel, Mytilus trossulus, is an ecologically important intertidal invertebrate that can survive freezing. Although much is known about the biochemical correlates of freeze tolerance in insects and vertebrates, the cryoprotectants that are used by intertidal invertebrates are not well characterized. Previous work has proposed two possible groups of low-molecular weight cryoprotectants in intertidal invertebrates: osmolytes and anaerobic byproducts. In our study, we examined which group of candidate cryoprotectants correlate with plasticity in freeze tolerance in mussels using 1H NMR metabolomics. We found that the freeze tolerance of M. trossulus varies on a seasonal basis, along an intertidal shore-level gradient, and with changing salinity. Acclimation to increased salinity (30 ppt compared with 15 ppt) increased freeze tolerance, and mussels were significantly more freeze tolerant during the winter. Mussel freeze tolerance also increased with increasing shore level. There was limited evidence that anaerobic byproduct accumulation was associated with increased freeze tolerance. However, osmolyte accumulation was correlated with increased freeze tolerance after high salinity acclimation and in the winter. The concentration of most low molecular weight metabolites did not vary with shore level, indicating that another mechanism is likely responsible for this pattern of variation in freeze tolerance. By identifying osmolytes as a group of molecules that assist in freezing tolerance, we have expanded the known biochemical repertoire of the mechanisms of freeze tolerance.


Assuntos
Mytilus , Aclimatação , Animais , Crioprotetores , Congelamento , Estações do Ano
16.
Science ; 368(6496): 1243-1247, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32527830

RESUMO

Predator recovery often leads to ecosystem change that can trigger conflicts with more recently established human activities. In the eastern North Pacific, recovering sea otters are transforming coastal systems by reducing populations of benthic invertebrates and releasing kelp forests from grazing pressure. These changes threaten established shellfish fisheries and modify a variety of other ecosystem services. The diverse social and economic consequences of this trophic cascade are unknown, particularly across large regions. We developed and applied a trophic model to predict these impacts on four ecosystem services. Results suggest that sea otter presence yields 37% more total ecosystem biomass annually, increasing the value of finfish [+9.4 million Canadian dollars (CA$)], carbon sequestration (+2.2 million CA$), and ecotourism (+42.0 million CA$). To the extent that these benefits are realized, they will exceed the annual loss to invertebrate fisheries (-$7.3 million CA$). Recovery of keystone predators thus not only restores ecosystems but can also affect a range of social, economic, and ecological benefits for associated communities.


Assuntos
Recuperação e Remediação Ambiental , Cadeia Alimentar , Kelp/crescimento & desenvolvimento , Lontras , Comportamento Predatório , Animais , Biomassa , Sequestro de Carbono , Pesqueiros , Herbivoria , Atividades Humanas , Frutos do Mar
17.
Ecology ; 101(8): e03073, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32299138

RESUMO

Physiological responses to ocean acidification are thought to be related to energetic trade-offs. Although a number of studies have proposed that negative responses to low pH could be minimized in situations where food resources are more readily available, evidence for such effects on individuals remain mixed, and the consequences of such effects at the community level remain untested. We explored the potential for food availability and diet quality to modify the effects of acidification on developing marine fouling communities in field-deployed mesocosms by supplementing natural food supply with one of two species of phytoplankton, differing in concentration of fatty acids. After 12 weeks, no species demonstrated the interactive effects generally predicted in the literature, where a positive overall effect of diet mitigated the negative overall effects of acidification. Rather, for some species, additional food supply appeared to bring out or exacerbate the negative effects of low pH. Community richness and structure were only altered by acidification, while space occupation and evenness reflected patterns of the most dominant species. Importantly, we find that acidification stress can increase the relative abundance of invasive species, even under resource conditions that otherwise prevented invasive species establishment. Overall, the proposed hypothesis regarding the ability for food addition to mitigate the negative effects of acidification is thus far not widely supported at species or community levels. It is clear that acidification is a strong driving force in these communities but understanding underlying energetic and competitive context is essential to developing mechanistic predictions for climate change responses.


Assuntos
Mudança Climática , Água do Mar , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares
18.
Int J Parasitol ; 49(13-14): 1015-1021, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655036

RESUMO

Human activities have caused an increase in atmospheric CO2 over the last 250 years, leading to unprecedented rates of change in seawater pH and temperature. These global scale processes are now commonly referred to as ocean acidification and warming, and have the potential to substantially alter the physiological performance of many marine organisms. It is vital that the effects of ocean acidification and warming on marine organisms are explored so that we can predict how marine communities may change in future. In particular, the effect of ocean acidification and warming on host-parasite dynamics is poorly understood, despite the ecological importance of these relationships. Here, we explore the response of one himasthlid trematode, Himasthla sp., an abundant and broadly distributed species of marine parasite, to combinations of elevated temperature and pCO2 that represent physiological extremes, pre-industrial conditions, and end of century predictions. Specifically, we quantified the life span of the free-living cercarial stage under elevated temperature and pCO2, focussing our research on functional life span (the time cercariae spend actively swimming) and absolute life span (the period before death). We found that the effects of temperature and pCO2 were complex and interactive. Overall, increased temperature negatively affected functional and absolute life span, e.g. across all pCO2 treatments the average time to 50% cessation of active swimming was approximately 8 h at 5 °C, 6 h at 15 °C, 4 h at 25 °C, and 2 h at 40 °C. The effect of pCO2, which significantly affected absolute life span, was highly variable across temperature treatments. These results strongly suggest that ocean acidification and warming may alter the transmission success of trematode cercariae, and potentially reduce the input of cercariae to marine zooplankton. Either outcome could substantially alter the community structure of coastal marine systems.


Assuntos
Concentração de Íons de Hidrogênio , Longevidade/efeitos dos fármacos , Longevidade/efeitos da radiação , Água do Mar/química , Temperatura , Trematódeos/efeitos dos fármacos , Trematódeos/efeitos da radiação , Animais , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/efeitos da radiação , Aquecimento Global
19.
Proc Biol Sci ; 286(1901): 20182766, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31014216

RESUMO

Disease emergence occurs within the context of ecological communities, and disease driven declines in host populations can lead to complex direct and indirect ecological effects. Varying effects of a single disease among multiple susceptible hosts could benefit relatively resistant species. Beginning in 2013, an outbreak of sea star wasting disease (SSWD) led to population declines of many sea star species along the west coast of North America. Through field surveys and laboratory experiments, we investigated how and why the relative abundances of two co-occurring sea star species, Evasterias troschelii and Pisaster ochraceus, shifted during the ongoing wasting epidemic in Burrard Inlet, British Columbia, Canada. We hypothesized that Evasterias is competitively inferior to Pisaster but more resistant to SSWD. Thus, we predicted that SSWD-induced declines of Pisaster could mitigate the negative effects of SSWD on Evasterias, as the latter would experience competitive release. We document shifts in sea star abundance from 2008-2017: Pisaster abundance and mean size declined during the outbreak, while Evasterias abundance increased from relatively rare to numerically dominant within the intertidal. When exposed to symptomatic sea stars, Pisaster and Evasterias both showed signs of SSWD, but transmission and susceptibility was lower in Evasterias. Despite diet overlap documented in our field surveys, Evasterias was not outcompeted by Pisaster in laboratory trails conducted with the relatively small Pisaster available after the outbreak. Interference competition with larger Pisaster, or prey exploitation by Pisaster during the summer when Evasterias is primarily subtidal, may explain the rarity of Evasterias prior to Pisaster declines. Our results suggest that indirect effects mediated by competition can mask some of the direct effects of disease outbreaks, and the combination of direct and indirect effects will determine the restructuring of a community after disturbance.


Assuntos
Densovirus/fisiologia , Microbiota , Estrelas-do-Mar/fisiologia , Animais , Colúmbia Britânica , Dinâmica Populacional , Especificidade da Espécie , Estrelas-do-Mar/microbiologia , Estrelas-do-Mar/virologia
20.
Ecology ; 100(3): e02594, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615200

RESUMO

Kelp systems dominate nearshore marine environments in upwelling zones characterized by cold temperatures and high nutrients. Worldwide, kelp population persistence and recruitment success generally decreases with rising water temperatures coupled with low nutrients, making kelp populations vulnerable to impending warming of the oceans. This response to climate change at a global scale, however, may vary due to regional differences in temperature variability, acclimation, and differential responses of kelp species to changing conditions. Culture experiments were conducted on 12 eastern Pacific kelp taxa across geographic regions (British Columbia, central California, and southern California) under three nitrate levels (1, 5, and 10 µmol/L) and two temperatures (12°C and 18°C) to determine sporophyte production (i.e., recruitment success). For all taxa from all locations, sporophytes were always present in the 12°C treatment and when recruitment failure was observed, it always occurred at 18°C, regardless of nitrate level, indicating that temperature is the driving factor limiting recruitment, not nitrate. Rising ocean temperatures will undoubtedly cause recruitment failure for many kelp species; however, the ability of species to acclimatize or adapt to increased temperatures at the warmer edge of their species range may promote a resiliency of kelp systems to climate change at a global scale.


Assuntos
Kelp , Colúmbia Britânica , California , Mudança Climática , Oceanos e Mares , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA