Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33446502

RESUMO

Haematopoiesis relies on tightly controlled gene expression patterns as development proceeds through a series of progenitors. While the regulation of hematopoietic development has been well studied, the role of noncoding elements in this critical process is a developing field. In particular, the discovery of new regulators of lymphopoiesis could have important implications for our understanding of the adaptive immune system and disease. Here we elucidate how a noncoding element is capable of regulating a broadly expressed transcription factor, Ikaros, in a lymphoid lineage-specific manner, such that it imbues Ikaros with the ability to specify the lymphoid lineage over alternate fates. Deletion of the Daedalus locus, which is proximal to Ikaros, led to a severe reduction in early lymphoid progenitors, exerting control over the earliest fate decisions during lymphoid lineage commitment. Daedalus locus deletion led to alterations in Ikaros isoform expression and a significant reduction in Ikaros protein. The Daedalus locus may function through direct DNA interaction as Hi-C analysis demonstrated an interaction between the two loci. Finally, we identify an Ikaros-regulated erythroid-lymphoid checkpoint that is governed by Daedalus in a lymphoid-lineage-specific manner. Daedalus appears to act as a gatekeeper of Ikaros's broad lineage-specifying functions, selectively stabilizing Ikaros activity in the lymphoid lineage and permitting diversion to the erythroid fate in its absence. These findings represent a key illustration of how a transcription factor with broad lineage expression must work in concert with noncoding elements to orchestrate hematopoietic lineage commitment.


Assuntos
Hematopoese/genética , Fator de Transcrição Ikaros/genética , Linfopoese/genética , RNA não Traduzido/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos
2.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32525985

RESUMO

CD8+ tissue-resident memory T cells (TRM cells) are poised at the portals of infection and provide long-term protective immunity. Despite their critical roles, the precise mechanics governing TRM cell reactivation in situ are unknown. Using a TCR-transgenic Nur77-GFP reporter to distinguish "antigen-specific" from "bystander" reactivation, we demonstrate that lung CD8+ TRM cells are reactivated more quickly, yet less efficiently, than their counterparts in the draining LNs (TLN cells). Global profiling of reactivated memory T cells revealed tissue-defined and temporally regulated recall response programs. Unlike the reactivation of CD8+ TLN cells, which is strictly dependent on CD11c+XCR1+ APCs, numerous antigen-presenting partners, both hematopoietic and non-hematopoietic, were sufficient to reactivate lung CD8+ TRM cells, but the quality of TRM cell functional responses depended on the identity of the APCs. Together, this work uncovers fundamental differences in the activation kinetics, mechanics, and effector responses between CD8+ memory T cells in peripheral vs. lymphoid organs, revealing a novel tissue-specific paradigm for the reactivation of memory CD8+ T cells.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Pulmão/imunologia , Linfonodos/imunologia , Ativação Linfocitária , Animais , Antígenos CD11/genética , Antígenos CD11/imunologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia
3.
Science ; 367(6483): 1255-1260, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32165587

RESUMO

T cells maintain a quiescent state prior to activation. As inappropriate T cell activation can cause disease, T cell quiescence must be preserved. Despite its importance, the mechanisms underlying the "quiescent state" remain elusive. Here, we identify BTG1 and BTG2 (BTG1/2) as factors responsible for T cell quiescence. BTG1/2-deficient T cells show an increased proliferation and spontaneous activation due to a global increase in messenger RNA (mRNA) abundance, which reduces the threshold to activation. BTG1/2 deficiency leads to an increase in polyadenylate tail length, resulting in a greater mRNA half-life. Thus, BTG1/2 promote the deadenylation and degradation of mRNA to secure T cell quiescence. Our study reveals a key mechanism underlying T cell quiescence and suggests that low mRNA abundance is a crucial feature for maintaining quiescence.


Assuntos
Proteínas Imediatamente Precoces/fisiologia , Ativação Linfocitária , Proteínas de Neoplasias/fisiologia , Estabilidade de RNA , RNA Mensageiro/química , Linfócitos T/imunologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Células Cultivadas , Proteínas Imediatamente Precoces/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Poliadenilação , Proteínas Supressoras de Tumor/genética
5.
Nature ; 573(7772): 69-74, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435009

RESUMO

Direct recognition of invading pathogens by innate immune cells is a critical driver of the inflammatory response. However, cells of the innate immune system can also sense their local microenvironment and respond to physiological fluctuations in temperature, pH, oxygen and nutrient availability, which are altered during inflammation. Although cells of the immune system experience force and pressure throughout their life cycle, little is known about how these mechanical processes regulate the immune response. Here we show that cyclical hydrostatic pressure, similar to that experienced by immune cells in the lung, initiates an inflammatory response via the mechanically activated ion channel PIEZO1. Mice lacking PIEZO1 in innate immune cells showed ablated pulmonary inflammation in the context of bacterial infection or fibrotic autoinflammation. Our results reveal an environmental sensory axis that stimulates innate immune cells to mount an inflammatory response, and demonstrate a physiological role for PIEZO1 and mechanosensation in immunity.


Assuntos
Pressão Hidrostática , Imunidade Inata , Canais Iônicos/metabolismo , Mecanotransdução Celular/imunologia , Animais , Endotelina-1/metabolismo , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Transdução de Sinais
6.
Cell ; 178(5): 1176-1188.e15, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442406

RESUMO

Adaptive immunity provides life-long protection by generating central and effector memory T cells and the most recently described tissue resident memory T (TRM) cells. However, the cellular origin of CD4 TRM cells and their contribution to host defense remain elusive. Using IL-17A tracking-fate mouse models, we found that a significant fraction of lung CD4 TRM cells derive from IL-17A-producing effector (TH17) cells following immunization with heat-killed Klebsiella pneumonia (Kp). These exTH17 TRM cells are maintained in the lung by IL-7, produced by lymphatic endothelial cells. During a memory response, neither antibodies, γδ T cells, nor circulatory T cells are sufficient for the rapid host defense required to eliminate Kp. Conversely, using parabiosis and depletion studies, we demonstrated that exTH17 TRM cells play an important role in bacterial clearance. Thus, we delineate the origin and function of airway CD4 TRM cells during bacterial infection, offering novel strategies for targeted vaccine design.


Assuntos
Infecções por Klebsiella/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Feminino , Memória Imunológica , Interleucina-17/genética , Interleucina-17/metabolismo , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/patogenicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/citologia , Células Th17/metabolismo
7.
Nature ; 564(7736): 434-438, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542152

RESUMO

The annotation of the mammalian protein-coding genome is incomplete. Arbitrary size restriction of open reading frames (ORFs) and the absolute requirement for a methionine codon as the sole initiator of translation have constrained the identification of potentially important transcripts with non-canonical protein-coding potential1,2. Here, using unbiased transcriptomic approaches in macrophages that respond to bacterial infection, we show that ribosomes associate with a large number of RNAs that were previously annotated as 'non-protein coding'. Although the idea that such non-canonical ORFs can encode functional proteins is controversial3,4, we identify a range of short and non-ATG-initiated ORFs that can generate stable and spatially distinct proteins. Notably, we show that the translation of a new ORF 'hidden' within the long non-coding RNA Aw112010 is essential for the orchestration of mucosal immunity during both bacterial infection and colitis. This work expands our interpretation of the protein-coding genome and demonstrates that proteinaceous products generated from non-canonical ORFs are crucial for the immune response in vivo. We therefore propose that the misannotation of non-canonical ORF-containing genes as non-coding RNAs may obscure the essential role of a multitude of previously undiscovered protein-coding genes in immunity and disease.


Assuntos
Imunidade nas Mucosas/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA Longo não Codificante/genética , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Colite/genética , Colite/imunologia , Colite/metabolismo , Imunidade nas Mucosas/efeitos dos fármacos , Interleucina-12/biossíntese , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , RNA Longo não Codificante/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Salmonella typhimurium/imunologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
8.
Nature ; 537(7619): 239-243, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27525555

RESUMO

Neutrophils, eosinophils and 'classical' monocytes collectively account for about 70% of human blood leukocytes and are among the shortest-lived cells in the body. Precise regulation of the lifespan of these myeloid cells is critical to maintain protective immune responses and minimize the deleterious consequences of prolonged inflammation. However, how the lifespan of these cells is strictly controlled remains largely unknown. Here we identify a long non-coding RNA that we termed Morrbid, which tightly controls the survival of neutrophils, eosinophils and classical monocytes in response to pro-survival cytokines in mice. To control the lifespan of these cells, Morrbid regulates the transcription of the neighbouring pro-apoptotic gene, Bcl2l11 (also known as Bim), by promoting the enrichment of the PRC2 complex at the Bcl2l11 promoter to maintain this gene in a poised state. Notably, Morrbid regulates this process in cis, enabling allele-specific control of Bcl2l11 transcription. Thus, in these highly inflammatory cells, changes in Morrbid levels provide a locus-specific regulatory mechanism that allows rapid control of apoptosis in response to extracellular pro-survival signals. As MORRBID is present in humans and dysregulated in individuals with hypereosinophilic syndrome, this long non-coding RNA may represent a potential therapeutic target for inflammatory disorders characterized by aberrant short-lived myeloid cell lifespan.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Células Mieloides/citologia , Células Mieloides/metabolismo , RNA Longo não Codificante/genética , Alelos , Animais , Antígenos Ly/metabolismo , Apoptose , Proteína 11 Semelhante a Bcl-2/biossíntese , Sobrevivência Celular , Regulação para Baixo , Eosinófilos/citologia , Eosinófilos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Regiões Promotoras Genéticas
9.
Cell ; 163(6): 1444-56, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638073

RESUMO

The intestinal mucosal barrier controlling the resident microbiome is dependent on a protective mucus layer generated by goblet cells, impairment of which is a hallmark of the inflammatory bowel disease, ulcerative colitis. Here, we show that IL-18 is critical in driving the pathologic breakdown of barrier integrity in a model of colitis. Deletion of Il18 or its receptor Il18r1 in intestinal epithelial cells (Δ/EC) conferred protection from colitis and mucosal damage in mice. In contrast, deletion of the IL-18 negative regulator Il18bp resulted in severe colitis associated with loss of mature goblet cells. Colitis and goblet cell loss were rescued in Il18bp(-/-);Il18r(Δ/EC) mice, demonstrating that colitis severity is controlled at the level of IL-18 signaling in intestinal epithelial cells. IL-18 inhibited goblet cell maturation by regulating the transcriptional program instructing goblet cell development. These results inform on the mechanism of goblet cell dysfunction that underlies the pathology of ulcerative colitis.


Assuntos
Colite Ulcerativa/patologia , Colite Ulcerativa/fisiopatologia , Interleucina-18/imunologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Sulfato de Dextrana , Células Endoteliais/metabolismo , Células Epiteliais/citologia , Feminino , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Subunidade alfa de Receptor de Interleucina-18/genética , Subunidade alfa de Receptor de Interleucina-18/metabolismo , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos , Transdução de Sinais
10.
Cell ; 159(7): 1563-77, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525875

RESUMO

The mechanism by which cells undergo death determines whether dying cells trigger inflammatory responses or remain immunologically silent. Mitochondria play a central role in the induction of cell death, as well as in immune signaling pathways. Here, we identify a mechanism by which mitochondria and downstream proapoptotic caspases regulate the activation of antiviral immunity. In the absence of active caspases, mitochondrial outer membrane permeabilization by Bax and Bak results in the expression of type I interferons (IFNs). This induction is mediated by mitochondrial DNA-dependent activation of the cGAS/STING pathway and results in the establishment of a potent state of viral resistance. Our results show that mitochondria have the capacity to simultaneously expose a cell-intrinsic inducer of the IFN response and to inactivate this response in a caspase-dependent manner. This mechanism provides a dual control, which determines whether mitochondria initiate an immunologically silent or a proinflammatory type of cell death.


Assuntos
Apoptose , Caspases/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Animais , DNA Mitocondrial/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Interferon Tipo I/imunologia , Camundongos , Camundongos Knockout , Viroses/imunologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-24163395

RESUMO

Regulation of metabolism is emerging as a central mechanism to control cellular identity and function. Extensive research in the last few years has revealed that the PI3K pathway is at the forefront of establishing metabolic changes required for immune cell growth, proliferation, migration, and differentiation. However, we currently have a limited understanding of how signaling through the PI3K pathway is tightly regulated during immune responses and immune cell development. Although a growing number of miRNAs have been shown to target important metabolic pathways, including the PI3K pathway itself, almost nothing is known regarding metabolic regulation by miRNAs in the context of the immune system. Recently, we revealed that the miR-181 family is a metabolic rheostat in vivo through the nonredundant regulation of PTEN. Over the next few years, additional miRNAs with the capacity to regulate various aspects of metabolism in immune cells are likely to be identified. We propose that these miRNAs will form a network to finely tune cellular metabolic status and that miR-181 will function as the primary metabolic rheostat of this network.


Assuntos
Sistema Imunitário/fisiologia , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regiões 3' não Traduzidas , Imunidade Adaptativa , Alelos , Animais , Tamanho Corporal , Diferenciação Celular , Crescimento Celular , Movimento Celular , Proliferação de Células , Homeostase , Humanos , Células Matadoras Naturais/citologia , Camundongos , PTEN Fosfo-Hidrolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA