Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(12): 2552-2563, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36444998

RESUMO

MGB-BP-3 is a potential first-in-class antibiotic, a Strathclyde Minor Groove Binder (S-MGB), that has successfully completed Phase IIa clinical trials for the treatment of Clostridioides difficile associated disease. Its precise mechanism of action and the origin of limited activity against Gram-negative pathogens are relatively unknown. Herein, treatment with MGB-BP-3 alone significantly inhibited the bacterial growth of the Gram-positive, but not Gram-negative, bacteria as expected. Synergy assays revealed that inefficient intracellular accumulation, through both permeation and efflux, is the likely reason for lack of Gram-negative activity. MGB-BP-3 has strong interactions with its intracellular target, DNA, in both Gram-negative and Gram-positive bacteria, revealed through ultraviolet-visible (UV-vis) thermal melting and fluorescence intercalator displacement assays. MGB-BP-3 was confirmed to bind to dsDNA as a dimer using nano-electrospray ionization mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. Type II bacterial topoisomerase inhibition assays revealed that MGB-BP-3 was able to interfere with the supercoiling action of gyrase and the relaxation and decatenation actions of topoisomerase IV of both Staphylococcus aureus and Escherichia coli. However, no evidence of stabilization of the cleavage complexes was observed, such as for fluoroquinolones, confirmed by a lack of induction of DSBs and the SOS response in E. coli reporter strains. These results highlight additional mechanisms of action of MGB-BP-3, including interference of the action of type II bacterial topoisomerases. While MGB-BP-3's lack of Gram-negative activity was confirmed, and an understanding of this presented, the recognition that MGB-BP-3 can target DNA of Gram-negative organisms will enable further iterations of design to achieve a Gram-negative active S-MGB.


Assuntos
Escherichia coli
2.
Nat Commun ; 12(1): 3898, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162854

RESUMO

One topical area of supramolecular chemistry is the binding of anionic species but despite the importance of anions in diverse cellular processes and for cancer development, anion receptors or 'binders' have received little attention as potential anti-cancer therapeutics. Here we report self-assembling trimetallic cryptands (e.g. [L2(Metal)3]6+ where Metal = Cu2+, Zn2+ or Mn2+) which can encapsulate a range of anions and which show metal-dependent differences in chemical and biological reactivities. In cell studies, both [L2Cu3]6+ and [L2Zn3]6+ complexes are highly toxic to a range of human cancer cell lines and they show significant metal-dependent selective activity towards cancer cells compared to healthy, non-cancerous cells (by up to 2000-fold). The addition of different anions to the complexes (e.g. PO43-, SO42- or PhOPO32-) further alters activity and selectivity allowing the activity to be modulated via a self-assembly process. The activity is attributed to the ability to either bind or hydrolyse phosphate esters and mechanistic studies show differential and selective inhibition of multiple kinases by both [L2Cu3]6+ and [L2Zn3]6+ complexes but via different mechanisms.


Assuntos
Ânions/química , Antineoplásicos/química , Complexos de Coordenação/química , Metais/química , Células A549 , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Células HCT116 , Células HT29 , Humanos , Concentração Inibidora 50 , Neoplasias/metabolismo , Neoplasias/patologia , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/metabolismo
3.
Angew Chem Int Ed Engl ; 59(46): 20480-20484, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32743891

RESUMO

The ligands L1 and L2 form trinuclear self-assembled complexes with Cu2+ (i.e. [(L1 )2 Cu3 ]6+ or [(L2 )2 Cu3 ]6+ ) both of which act as a host to a variety of anions. Inclusion of long aliphatic chains on these ligands allows the assemblies to extract anions from aqueous media into organic solvents. Phosphate can be removed from water efficiently and highly selectively, even in the presence of other anions.

4.
Methods Mol Biol ; 2116: 449-461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221936

RESUMO

The recent introduction by Carl Zeiss Ltd. of the Airyscan detector module for their LSM880 confocal laser-scanning microscope has enabled routine superresolution microscopy to be combined with the advantages of confocal-based fluorescence imaging. Resulting enhanced spatial resolution in X, Y, and Z provides tractable opportunity to derive new insight into protein localization(s), organelle dynamics, and thence protein function within trypanosomatids or other organisms. Here, we describe methods for preparing slides, cells, and basic microscope setup for fluorescence imaging of trypanosomatids using the LSM-880 with Airyscan platform.


Assuntos
Microscopia Intravital/métodos , Coloração e Rotulagem/métodos , Trypanosomatina/citologia , Citoesqueleto , Flagelos , Corantes Fluorescentes/química , Microscopia Intravital/instrumentação , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos
5.
J Vis Exp ; (151)2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31566595

RESUMO

Drug discovery and development in cancer research is increasingly being based on drug screens in a 3D format. Novel inhibitors targeting the migratory and invasive potential of cancer cells, and consequently the metastatic spread of disease, are being discovered and considered as complementary treatments in highly invasive cancers such as gliomas. Thus, generating data enabling the detailed analyses of cells in a 3D environment following the addition of a drug is required. The methodology described here, combining spheroid invasion assays with high-resolution image capture and data analysis by confocal laser scanning microscopy (CLSM), enabled detailed characterization of the effects of the potential anti-migratory inhibitor MI-192 on glioma cells. Spheroids were generated from cell lines for invasion assays in low adherent 96-well plates and then prepared for CLSM analysis. The described workflow was preferred over other commonly used spheroid-generating techniques due to both ease and reproducibility. This, combined with the enhanced image resolution attained by confocal microscopy compared to conventional wide-field approaches, allowed the identification and analysis of distinct morphological changes in migratory cells in a 3D environment following treatment with the migrastatic drug MI-192.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/fisiologia , Esferoides Celulares/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Glioma/patologia , Humanos , Microscopia Confocal/métodos , Invasividade Neoplásica/patologia , Reprodutibilidade dos Testes , Esferoides Celulares/efeitos dos fármacos
6.
Open Biol ; 8(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30045883

RESUMO

Proteins of the FGR1 oncogene partner (or FOP) family are found at microtubule organizing centres (MTOCs) including, in flagellate eukaryotes, the centriole or flagellar basal body from which the axoneme extends. We report conservation of FOP family proteins, TbFOPL and TbOFD1, in the evolutionarily divergent sleeping sickness parasite Trypanosoma brucei, showing (in contrast with mammalian cells, where FOP is essential for flagellum assembly) depletion of a trypanosome FOP homologue, TbFOPL, affects neither axoneme nor flagellum elongation. Instead, TbFOPL depletion causes catastrophic failure in assembly of a lineage-specific, extra-axonemal structure, the paraflagellar rod (PFR). That depletion of centriolar TbFOPL causes failure in PFR assembly is surprising because PFR nucleation commences approximately 2 µm distal from the basal body. When over-expressed with a C-terminal myc-epitope, TbFOPL was also observed at mitotic spindle poles. Little is known about bi-polar spindle assembly during closed trypanosome mitosis, but indication of a possible additional MTOC function for TbFOPL parallels MTOC localization of FOP-like protein TONNEAU1 in acentriolar plants. More generally, our functional analysis of TbFOPL emphasizes significant differences in evolutionary cell biology trajectories of FOP-family proteins. We discuss how at the molecular level FOP homologues may contribute to flagellum assembly and function in diverse flagellates.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Trypanosoma brucei brucei/fisiologia , Animais , Axonema/fisiologia , Sequência de Bases , Sequência Conservada , Evolução Molecular , Flagelos/fisiologia , Humanos , Mamíferos/genética , Mamíferos/parasitologia , Família Multigênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Parasitology ; 145(10): 1311-1323, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29895336

RESUMO

Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.


Assuntos
Evolução Biológica , Kinetoplastida/genética , Simbiose , Trypanosomatina/genética , Biodiversidade , Evolução Molecular , Genoma de Protozoário , Leishmania/genética , Leishmania/fisiologia , Trypanosoma/genética , Trypanosoma/fisiologia
8.
Protist ; 168(4): 452-466, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28822909

RESUMO

TOF-LisH-PLL motifs define FOP family proteins; some members are involved in flagellum assembly. The critical role of FOP family protein FOR20 is poorly understood. Here, we report relative localisations of the four FOP family proteins in parasitic Trypanosoma brucei: TbRP2, TbOFD1 and TbFOP/FOP1-like are mature basal body proteins whereas TbFOR20 is present on pro- and mature basal bodies - on the latter it localises distal to TbRP2. We discuss how the data, together with published work for another protist Giardia intestinalis, informs on likely FOR20 function. Moreover, our localisation study provides convincing evidence that the antigen recognised by monoclonal antibody YL1/2 at trypanosome mature basal bodies is FOP family protein TbRP2, not tyrosinated α-tubulin as widely stated in the literature. Curiously, FOR20 proteins from T. brucei and closely related African trypanosomes possess short, negatively-charged N-terminal extensions absent from FOR20 in other trypanosomatids and other eukaryotes. The extension is necessary for protein targeting, but insufficient to re-direct TbRP2 to probasal bodies. Yet, FOR20 from the American trypanosome T. cruzi, which lacks any extension, localises to pro- and mature basal bodies when expressed in T. brucei. This identifies unexpected variation in FOR20 architecture that is presently unique to one clade of trypanosomatids.


Assuntos
Corpos Basais/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA