Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(12): e0145151, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26670328

RESUMO

Glucocorticoid signaling regulates target genes by multiple mechanisms, including the repression of transcriptional activities of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) though direct protein-protein interactions and subsequent O-GlcNAcylation of RNA polymerase II (pol II). Recent studies have shown that overexpression of O-linked ß-N-acetylglucosamine transferase (OGT), which adds an O-linked ß-N-acetylglucosamine (O-GlcNAc) group to the C-terminal domain of RNA pol II, increases the transrepression effects of glucocorticoids (GC). As O-GlcNAcase (OGA) is an enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, we hypothesized that the potentiation of GC effects following OGT overexpression could be similarly observed via the direct inhibition of OGA, inhibiting O-GlcNAc removal from pol II. Here we show that despite pharmacological evidence of target engagement by a selective small molecule inhibitor of OGA, there is no evidence for a sensitizing effect on glucocorticoid-mediated effects on TNF-α promoter activity, or gene expression generally, in human cells. Furthermore, inhibition of OGA did not potentiate glucocorticoid-induced apoptosis in several cancer cell lines. Thus, despite evidence for O-GlcNAc modification of RNA pol II in GR-mediated transrepression, our data indicate that pharmacological inhibition of OGA does not potentiate or enhance glucocorticoid-mediated transrepression.


Assuntos
Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Piranos/farmacologia , Receptores de Glucocorticoides/metabolismo , Tiazóis/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Dexametasona/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Concentração Inibidora 50 , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , N-Acetilglucosaminiltransferases/metabolismo , Prednisolona/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células U937
2.
PLoS One ; 9(10): e108371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25289887

RESUMO

Dinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib's antitumor effect and relevant to the clinical duration of exposure. This was further underscored by kinetics of dinaciclib-induced downregulation of the antiapoptotic BCL2 family member MCL1 and correlation of sensitivity with the MCL1-to-BCL-xL mRNA ratio or MCL1 amplification in solid tumor models in vitro and in vivo. This MCL1-dependent apoptotic mechanism was additionally supported by synergy with the BCL2, BCL-xL and BCL-w inhibitor navitoclax (ABT-263). These results provide the rationale for investigating MCL1 and BCL-xL as predictive biomarkers for dinaciclib antitumor response and testing combinations with BCL2 family member inhibitors.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Compostos de Piridínio/farmacologia , Proteína bcl-X/metabolismo , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Óxidos N-Cíclicos , Modelos Animais de Doenças , Diterpenos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Compostos de Epóxi/farmacologia , Feminino , Dosagem de Genes , Humanos , Indolizinas , Masculino , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias/genética , Fenantrenos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/genética
3.
Clin Chem ; 60(5): 783-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24578239

RESUMO

BACKGROUND: Distinction between asymptomatic and potentially clinically significant forms of galactosemia due to UDP-galactose 4'-epimerase (GALE) deficiency requires enzyme measurement in erythrocytes and other cells. We sought to develop a GALE assay using a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method. METHODS: The reversible GALE assay was conducted with UDPGal as a substrate. The coeluting reaction product, uridine diphosphate glucose (UDPGlc), and its isomeric substrate, uridine diphosphate galactose (UDPGal), were detected by MS/MS at mass transitions 565 > 280, 565 > 241 and 565 > 403. The UDPGal was enriched in mass transition 565 > 403 compared with UDPGlc, whereas the UDPGlc was enriched in the mass transition 565 > 241 compared with UDPGal. The percentage of UDPGal in the reaction mixture was calculated by use of the ratio of ion intensities of the 2 daughter ions and a fourth-order polynomial calibrator curve. RESULTS: The method yielded a mean (SD) GALE activity of 9.8 (2.2) µmol · g(-1) hemoglobin · h(-1) in erythrocyte extracts from 27 controls. The apparent Km of the substrate, UDPGal, was 0.05 mmol/L. The GALE activity ranged from 433 to 993 µmol · g(-1) protein · h(-1) in control lymphoblast extracts. In a blinded test of 22 subjects suspected of GALE deficiency, we identified 6 individuals whose residual activities were below the range of controls, compatible with intermediate GALE deficiency. CONCLUSIONS: This assay can be used to distinguish the different forms of GALE deficiency. From an analytical standpoint, differentiating isomers on the basis of fragment intensity ratios should also prove useful for analogous enzymatic studies involving substrates and products that are structural isomers.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Galactosemias/sangue , Espectrometria de Massas em Tandem/métodos , UDPglucose 4-Epimerase/sangue , UDPglucose 4-Epimerase/química , Linhagem Celular , Estabilidade Enzimática , Eritrócitos/enzimologia , Galactosemias/enzimologia , Humanos , Isoenzimas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade por Substrato , UDPglucose 4-Epimerase/metabolismo
4.
Mol Genet Metab ; 102(1): 33-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20863731

RESUMO

The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS. In this study we generated a robust and sensitive LC-MS/MS based GALT and GALK assay using a novel normal phase chromatographic condition. We improved upon our earlier assay by drastically reducing the instrument run time and eliminating the use of an ion pairing reagent. Stable isotope labeled substrates were utilized in the GALT and GALK assays. The enzymatic products ([(13)C(6)]-uridine diphosphate galactose in GALT assay and [(13)C(6)]-galactose-1-phosphate in GALK assay) were quantified in a 3 min LC-MS/MS run. The assays were sensitive enough to allow for the quantification of enzyme activities as low as 0.2% and 0.3% of normal control values in the GALT and GALK assays, respectively. Thirty-three samples from non-galactosemic patients were assayed to have erythrocyte GALT activity of 23.4±4.2 and GALK activity of 1.8±0.47 (mean±SD) µmol⋅(g Hgb)(-1) h(-1). Erythrocyte GALT activities in a cohort of 16 patients with classic or severe galactosemia were measured: 4 patients had GALT activity less than 1% of normal control values and the remaining 12 had no detectable GALT activity. No GALK activity was detected in a GALK deficient sample we analyzed. Lastly, we tested the feasibility of adapting this LC-MS/MS based GALT/GALK assay as a newborn screening (NBS) test.


Assuntos
Galactoquinase/deficiência , Galactosemias/diagnóstico , UTP-Hexose-1-Fosfato Uridililtransferase/deficiência , Estudos de Casos e Controles , Cromatografia Líquida , Ensaios Enzimáticos , Estabilidade Enzimática , Galactoquinase/sangue , Humanos , Espectrometria de Massas em Tandem , UTP-Hexose-1-Fosfato Uridililtransferase/sangue
5.
Clin Chem ; 56(5): 772-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20348403

RESUMO

BACKGROUND: The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay for GALT enzyme activity measurement. METHOD: Our assay used stable isotope-labeled alpha- galactose-1-phosphate ([(13)C(6)]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([(13)C(6)]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [(13)C(6)]-Glu-1-P (265 > 79) as an internal standard. RESULTS: The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) mumol x (g Hgb)(-1) x h(-1) in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 micromol x (g Hgb)(-1) x h(-1) (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent K(m) of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. CONCLUSIONS: This LC-MS/MS-based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities.


Assuntos
Cromatografia Líquida/métodos , Ensaios Enzimáticos/métodos , Galactosemias/enzimologia , Espectrometria de Massas em Tandem/métodos , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , Eritrócitos/enzimologia , Galactosemias/diagnóstico , Galactosefosfatos/metabolismo , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA