Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19275, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369246

RESUMO

Psychiatric comorbidities are relevant in patients with Myasthenia gravis (MG). Also, MG patients experience a reduced health-related quality of life (HRQoL). We aimed to quantify the impact of depression as well as self-perceived MG severity on HRQoL and caregivers' burden. In this cross-sectional study, we used a survey encompassing demographic, disease-related information, and standardized questionnaires to assess symptoms of depression, anxiety, HRQoL (MG Quality of Life scale; MG-QoL15), and caregiver burden (Burden Scale for Family Caregivers; BSFC). Data from 1399 participating patients (96%) and 1042 caregivers (65%) were eligible for further analysis. Symptoms of depression and anxiety disorder were indicated by 31% and 36% of patients. Self-reported MG severity (MG severity) and MG-QoL15 scores were strongly associated (estimated marginal means for severe versus mild MG severity = 18 95% CI [16; 21]; p ≤ 0.001). Adjusting for symptoms of depression decreased the estimated strength of this association (estimated marginal means for severe versus mild MG severity = 15 [13; 17]; p ≤ 0.001). Caregiver burden was associated to MG disease severity (estimated marginal means for severe vs. mild MG severity = 0.16 [0.13; 0,19); p ≤ 0.001) and also negatively influenced by symptoms of depression (estimated marginal means = 0.12 [0.09; 0.15]). Symptoms of depression and anxiety disorder in MG are frequent. Beyond MG severity, symptoms of depression have negative effects on HRQoL as well as on caregivers' burden. Diagnosis and treatment of psychiatric comorbidities should be considered an important element in MG care. Screening tools for mental health conditions should be implemented at least in specialized MG centers.


Assuntos
Miastenia Gravis , Qualidade de Vida , Humanos , Qualidade de Vida/psicologia , Sobrecarga do Cuidador , Estudos Transversais , Saúde Mental , Cuidadores/psicologia , Inquéritos e Questionários , Miastenia Gravis/epidemiologia , Depressão/epidemiologia , Depressão/psicologia
2.
Oncotarget ; 9(45): 27760-27772, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963235

RESUMO

INTRODUCTION: Clinical application of antiangiogenic therapy lacks direct visualization of therapy efficacy and vascular resistance. We aimed to establish molecular imaging during treatment with sunitinib using the fibronectin extradomain A specific small immunoprotein(SIP)-F8 in glioma. METHODS: Biodistribution analysis of F8-SIP-Alexa-555 was performed in SF126-glioma bearing or control mice (n = 23 and 7, respectively). Intravital microscopy(IVM) was performed on a microvascular level after 7 days (n = 5 per group) and subsequently after 6 days of sunitinib treatment (n = 4) or without (n = 2).Additionally, near infrared fluorescence(NIRF) imaging was established with F8-SIP-Alexa-750 allowing non-invasive imaging with and without antiangiogenic treatment in orthotopic tumors (n = 38 divided in 4 groups). MRI was used to determine tumor size and served as a reference for NIRF imaging. RESULTS: F8-SIP demonstrated a time and hemodynamic dependent tumor specific accumulation. A significantly higher vascular accumulation occurred with antiangiogenic treatment compared to untreated tumors enabling visualization of resistant tumor vessels by F8-SIP-mediated NIRF imaging. In orthotopic tumors, sunitinib reduced F8-SIP-Alexa-750 enrichment volume but not fluorescence intensity indicative of F8-SIP accumulation in fewer vessels. CONCLUSION: F8-SIP is highly tumor specific with time and hemodynamic dependent biodistribution. The higher vascular accumulation to remaining vessels enables molecular imaging and targeting of therapy resistant tumor vessels.

3.
J Neurosci ; 36(31): 8132-48, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27488634

RESUMO

UNLABELLED: The aim of this study was to explore the signaling and neuroprotective effect of transactivator of transcription (TAT) protein transduction of the apoptosis repressor with CARD (ARC) in in vitro and in vivo models of cerebral ischemia in mice. In mice, transient focal cerebral ischemia reduced endogenous ARC protein in neurons in the ischemic striatum at early reperfusion time points, and in primary neuronal cultures, RNA interference resulted in greater neuronal susceptibility to oxygen glucose deprivation (OGD). TAT.ARC protein delivery led to a dose-dependent better survival after OGD. Infarct sizes 72 h after 60 min middle cerebral artery occlusion (MCAo) were on average 30 ± 8% (mean ± SD; p = 0.005; T2-weighted MRI) smaller in TAT.ARC-treated mice (1 µg intraventricularly during MCAo) compared with controls. TAT.ARC-treated mice showed better performance in the pole test compared with TAT.ß-Gal-treated controls. Importantly, post-stroke treatment (3 h after MCAo) was still effective in affording reduced lesion volume by 20 ± 7% (mean ± SD; p < 0.05) and better functional outcome compared with controls. Delayed treatment in mice subjected to 30 min MCAo led to sustained neuroprotection and functional behavior benefits for at least 28 d. Functionally, TAT.ARC treatment inhibited DAXX-ASK1-JNK signaling in the ischemic brain. ARC interacts with DAXX in a CARD-dependent manner to block DAXX trafficking and ASK1-JNK activation. Our work identifies for the first time ARC-DAXX binding to block ASK1-JNK activation as an ARC-specific endogenous mechanism that interferes with neuronal cell death and ischemic brain injury. Delayed delivery of TAT.ARC may present a promising target for stroke therapy. SIGNIFICANCE STATEMENT: Up to now, the only successful pharmacological target of human ischemic stroke is thrombolysis. Neuroprotective pharmacological strategies are needed to accompany therapies aiming to achieve reperfusion. We describe that apoptosis repressor with CARD (ARC) interacts and inhibits DAXX and proximal signals of cell death. In a murine stroke model mimicking human malignant infarction in the territory of the middle cerebral artery, TAT.ARC salvages brain tissue when given during occlusion or 3 h delayed with sustained functional benefits (28 d). This is a promising novel therapeutic approach because it appears to be effective in a model producing severe injury by interfering with an array of proximal signals and effectors of the ischemic cascade, upstream of JNK, caspases, and BIM and BAX activation.


Assuntos
Apoptose , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Produtos do Gene tat/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas Correpressoras , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares , Ligação Proteica , Mapas de Interação de Proteínas
4.
Cancer Lett ; 380(2): 568-576, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26297987

RESUMO

Hypoxia-regulated molecules play an important role in vascular resistance to antiangiogenic treatment. N-myc downstream-regulated-gene 1 (NDRG1) is significantly upregulated during hypoxia in glioma. It was the aim of the present study to analyze the role of NDRG1 on glioma angiogenesis and on antiangiogenic treatment. Orthotopically implanted NDRG1 glioma showed reduced tumor growth and vessel density compared to controls. RT-PCR gene array analysis revealed a 30-fold TNFSF15 increase in NDRG1 tumors. Consequently, the supernatant from NDRG1 transfected U87MG glioma cells resulted in reduced HUVEC proliferation, migration and angiogenic response in tube formation assays in vitro. This effect was provoked by increased TNFSF15 promoter activity in NDRG1 cells. Mutations in NF-κB and AP-1 promoter response elements suppressed TNFSF15 promoter activity. Moreover, U87MG glioma NDRG1 knockdown supernatant contained multiple proangiogenic proteins and increased HUVEC spheroid sprouting. Sunitinib treatment of orhotopically implanted mice reduced tumor volume and vessel density in controls; in NDRG1 overexpressing cells no reduction of tumor volume or vessel density was observed. NDRG1 overexpression leads to reduced tumor growth and angiogenesis in experimental glioma via upregulation of TNFSF15. In NDRG1 overexpressing glioma antiangiogenic treatment does not yield a therapeutic response.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/tratamento farmacológico , Proteínas de Ciclo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neovascularização Patológica , Pirróis/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Regulação Neoplásica da Expressão Gênica , Glioma/irrigação sanguínea , Glioma/genética , Glioma/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Neovascularização Fisiológica , Regiões Promotoras Genéticas , Interferência de RNA , Transdução de Sinais , Sunitinibe , Fatores de Tempo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transfecção , Carga Tumoral/efeitos dos fármacos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Regulação para Cima
5.
Circulation ; 131(20): 1772-82, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794850

RESUMO

BACKGROUND: Poststroke angiogenesis contributes to long-term recovery after stroke. Signal transducer and activator of transcription-3 (Stat3) is a key regulator for various inflammatory signals and angiogenesis. It was the aim of this study to determine its function in poststroke outcome. METHODS AND RESULTS: We generated a tamoxifen-inducible and endothelial-specific Stat3 knockout mouse model by crossbreeding Stat3(floxed/KO) and Tie2-Cre(ERT2) mice. Cerebral ischemia was induced by 30 minutes of middle cerebral artery occlusion. We demonstrated that endothelial Stat3 ablation did not alter lesion size 2 days after ischemia but did worsen functional outcome at 14 days and increase lesion size at 28 days. At this late time point vascular Stat3 expression and phosphorylation were still increased in wild-type mice. Gene array analysis of a CD31-enriched cell population of the neurovascular niche showed that endothelial Stat3 ablation led to a shift toward an antiangiogenic and axon growth-inhibiting micromilieu after stroke, with an increased expression of Adamts9. Remodeling and glycosylation of the extracellular matrix and microglia proliferation were increased, whereas angiogenesis was reduced. CONCLUSIONS: Endothelial Stat3 regulates angiogenesis, axon growth, and extracellular matrix remodeling and is essential for long-term recovery after stroke. It might serve as a potent target for stroke treatment after the acute phase by fostering angiogenesis and neuroregeneration.


Assuntos
Endotélio Vascular/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Neovascularização Fisiológica/fisiologia , Plasticidade Neuronal/fisiologia , Fator de Transcrição STAT3/fisiologia , Proteínas ADAM/biossíntese , Proteínas ADAM/genética , Proteína ADAMTS9 , Animais , Axônios/fisiologia , Encéfalo/patologia , Microambiente Celular , Circulação Cerebrovascular , Convalescença , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Camundongos , Camundongos Knockout , Microglia/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Processamento de Proteína Pós-Traducional , Recuperação de Função Fisiológica , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Transdução de Sinais/fisiologia
6.
J Cereb Blood Flow Metab ; 33(5): e1-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23443176

RESUMO

Intravenous administration of iron oxide nanoparticles during the acute stage of experimental stroke can produce signal intensity changes in the ischemic region. This has been attributed, albeit controversially, to the infiltration of iron-laden blood-borne macrophages. The properties of nanoparticles that render them most suitable for phagocytosis is a matter of debate, as is the most relevant timepoint for administration. Both of these questions are examined in the present study. Imaging experiments were performed in mice with 30 minutes of middle cerebral artery occlusion (MCAO). Iron oxide nanoparticles with different charges and sizes were used, and mice received 300 µmol Fe/kg intravenously: either superparamagnetic iron oxide nanoparticles (SPIOs), ultrasmall SPIOs, or very small SPIOs. The particles were administered 7 days before MCAO, at the time of reperfusion, or 72 hours after MCAO. Interestingly, there was no observable signal change in the ischemic brains that could be attributed to iron. Furthermore, no Prussian blue-positive cells were found in the brains or blood leukocytes, despite intense staining in the livers and spleens. This implies that the nanoparticles selected for this study are not phagocytosed by blood-borne leukocytes and do not enter the ischemic mouse brain.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Meios de Contraste , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Meios de Contraste/química , Leucócitos/citologia , Leucócitos/patologia , Nanopartículas de Magnetita/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Fagocitose
7.
J Neurosci ; 27(17): 4562-71, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17460069

RESUMO

The role of glucocorticoids in the regulation of apoptosis remains incongruous. Here, we demonstrate that corticosterone protects neurons from apoptosis by a mechanism involving the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). In primary cortical neurons, corticosterone leads to a dose- and Akt-kinase-dependent upregulation with enhanced phosphorylation and cytoplasmic appearance of p21(Waf1/Cip1) at Thr 145. Exposure of neurons to the neurotoxin ethylcholine aziridinium (AF64A) results in activation of caspase-3 and a dramatic loss of p21(Waf1/Cip1) preceding apoptosis in neurons. These effects of AF64A are reversed by pretreatment with corticosterone. Corticosterone-mediated upregulation of p21(Waf1/Cip1) and neuroprotection are completely abolished by glucocorticoid and mineralocorticoid receptor antagonists as well as inhibitors of PI3- and Akt-kinase. Both germline and somatically induced p21(Waf1/Cip1) deficiency abrogate the neuroprotection by corticosterone, whereas overexpression of p21(Waf1/Cip1) suffices to protect neurons from apoptosis. We identify p21(Waf1/Cip1) as a novel antiapoptotic factor for postmitotic neurons and implicate p21(Waf1/Cip1) as the molecular target of neuroprotection by high-dose glucocorticoids.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glucocorticoides/farmacologia , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Citoplasma/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
8.
J Neurochem ; 98(4): 1019-31, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16895577

RESUMO

Histone acetylation and deacetylation participate in the epigenetic regulation of gene expression. In this paper, we demonstrate that pre-treatment with the histone deacetylation inhibitor trichostatin A (TSA) enhances histone acetylation in primary cortical neurons and protects against oxygen/glucose deprivation, a model for ischaemic cell death in vitro. The actin-binding protein gelsolin was identified as a mediator of neuroprotection by TSA. TSA enhanced histone acetylation of the gelsolin promoter region, and up-regulated gelsolin messenger RNA and protein expression in a dose- and time-dependent manner. Double-label confocal immunocytochemistry visualized the up-regulation of gelsolin and histone acetylation within the same neuron. Together with gelsolin up-regulation, TSA pre-treatment decreased levels of filamentous actin. The neuroprotective effect of TSA was completely abolished in neurons lacking gelsolin gene expression. In conclusion, we demonstrate that the enhancement of gelsolin gene expression correlates with neuroprotection induced by the inhibition of histone deacetylation.


Assuntos
Inibidores Enzimáticos/farmacologia , Gelsolina/deficiência , Glucose/fisiologia , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Hipóxia/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores , Acetilação/efeitos dos fármacos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Animais , Morte Celular/efeitos dos fármacos , Cromatina/metabolismo , Remoção de Radical Alquila , Feminino , Gelsolina/biossíntese , Gelsolina/genética , Glucose/deficiência , Imunoensaio , Immunoblotting , Imuno-Histoquímica , Microscopia Confocal , Gravidez , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/fisiologia
9.
J Neurochem ; 92(6): 1386-98, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15748157

RESUMO

Statins [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors] exert cholesterol-independent pleiotropic effects that include anti-thrombotic, anti-inflammatory, and anti-oxidative properties. Here, we examined direct protective effects of atorvastatin on neurones in different cell damage models in vitro. Primary cortical neurones were pre-treated with atorvastatin and then exposed to (i) glutamate, (ii) oxygen-glucose deprivation or (iii) several apoptosis-inducing compounds. Atorvastatin significantly protected from glutamate-induced excitotoxicity as evidenced by propidium iodide staining, nuclear morphology, release of lactate dehydrogenase, and mitochondrial tetrazolium metabolism, but not from oxygen-glucose deprivation or apoptotic cell death. This anti-excitototoxic effect was evident with 2-4 days pre-treatment but not with daily administration or shorter-term pre-treatment. The protective properties occurred independently of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition because co-treatment with mevalonate or other isoprenoids did not reverse or attenuate neuroprotection. Atorvastatin attenuated the glutamate-induced increase of intracellular calcium, which was associated with a modulation of NMDA receptor function. Taken together, atorvastatin exerts specific anti-excitotoxic effects independent of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition, which has potential therapeutic implications.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Ácidos Heptanoicos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/antagonistas & inibidores , Pirróis/farmacologia , Acil Coenzima A/antagonistas & inibidores , Acil Coenzima A/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Atorvastatina , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Glucose/deficiência , Ácido Glutâmico/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Ratos , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo
10.
Mol Cell Neurosci ; 25(1): 69-82, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14962741

RESUMO

Gelsolin (gsn), an actin-severing protein, protects neurons from excitotoxic cell death via inactivation of membranous Ca(2+) channels. Its role during apoptotic cell death, however, has remained unclear. Using several models of neuronal cell death, we demonstrate that endogenous gelsolin has anti-apoptotic properties that correlate to its dynamic actions on the cytoskeleton. We show that neurons lacking gelsolin (gsn(-/-)) have enhanced apoptosis following exposure to staurosporine, thapsigargin, or the cholinergic toxin ethylcholine aziridinium (AF64A). AF64A-induced loss of mitochondrial membrane potential and activation of caspase-3 was specifically enhanced in gsn(-/-) neurons and could be reversed by pharmacological inhibition of mitochondrial permeability transition. Moreover, increased caspase-3 activation and cell death in AF64A-treated gsn(-/-) neurons were completely reversed by pharmacological depolymerization of actin filaments and further enhanced by their stabilization. In conclusion, actin remodeling by endogenous gelsolin or analogues protects neurons from apoptosis mediated by mitochondria and caspase-3.


Assuntos
Citoesqueleto de Actina/metabolismo , Apoptose/fisiologia , Colina/análogos & derivados , Gelsolina/fisiologia , Degeneração Neural/metabolismo , Neurônios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aziridinas/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Caspase 3 , Caspases/efeitos dos fármacos , Caspases/metabolismo , Células Cultivadas , Colina/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Feto , Gelsolina/deficiência , Gelsolina/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Polímeros/metabolismo
11.
J Neurochem ; 84(5): 1028-39, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603827

RESUMO

A direct involvement of the antioxidant enzyme NAD(P)H:quinone oxidoreductase (NQO1) in neuroprotection has not yet been shown. The aim of this study was to examine changes, localization and role of NQO1 after different neuronal injury paradigms. In primary cultures of rat cortex the activity of NQO1 was measured after treatment with ethylcholine aziridinium (AF64A; 40 micro m), inducing mainly apoptotic cell death, or oxygen-glucose deprivation (OGD; 120 min), which combines features of apoptotic and necrotic cell death. After treatment with AF64A a significant NQO1 activation started after 24 h. Sixty minutes after OGD a significant early induction of the enzyme was observed, followed by a second increase 24 h later. Enzyme activity was preferentially localized in glial cells in control and injured cultures, however, expression also occurred in injured neuronal cells. Inhibition of the NQO1 activity by dicoumarol, cibacron blue or chrysin (1-100 nM) protected the cells both after exposure to AF64A or OGD as assessed by the decreased release of lactate dehydrogenase. Comparable results were obtained in vivo using a mouse model of focal cerebral ischaemia. Dicoumarol treatment (30 nmol intracerebroventricular) reduced the infarct volume by 29% (p = 0.005) 48 h after the insult. After chemical induction of NQO1 activity by t-butylhydroquinone in vitro neuronal damage was exaggerated. Our data suggest that the activity of NQO1 is a deteriorating rather than a protective factor in neuronal cell death.


Assuntos
Isquemia Encefálica/enzimologia , Colina/análogos & derivados , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADPH Desidrogenase , Neurônios/enzimologia , Animais , Apoptose/efeitos dos fármacos , Aziridinas/farmacologia , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Células Cultivadas , Colina/farmacologia , Dicumarol/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Sinergismo Farmacológico , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Hidroquinonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar
12.
Biomaterials ; 23(12): 2467-78, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12033594

RESUMO

The biological properties of four different membranes were studied regarding their possible application in biohybrid liver support systems. Two of them, one made of polyetherimide (PEI), and a second based on polyacrylonitrile-N-vinylpyrollidone co-polymer (P(AN-NVP)), were recently developed in our lab and studied for the first time. Together with pure polyacrylonitrile (PAN) membranes, the three preparations were characterised as ultra-filtration membranes. Their ability to support cell attachment, morphology, proliferation and function of human hepatoblastoma C3A cells was studied. The role of surface morphology for the interaction with hepatocytes was highlighted using a commercial, moderately wettable polyvinylidendifluoride (PVDF) membrane with micro-filtration properties. Comparative investigations showed strongest interaction of C3A cells with PAN membranes, as the focal adhesion contacts were more expressed and cell growth was also high. However, the functional activity in terms of albumin synthesis was reduced. Very similar results were obtained with the most hydrophobic PEI membrane. In contrast, the most hydrophilic membrane P(AN-NVP) was found to provoke stronger homotypic adhesion (E-cadherin expression) of C3A cells and less substratum attachment (focal adhesions), but enhanced albumin secretion. However, proliferation of C3A cells was lowered. Micro-porous PVDF membrane showed very good initial attachment, but the resulting cell material and cell-cell interaction were relatively poor developed. Among four membranes tested, PEI seems to be the most attractive membrane for biohybrid liver devices, as it provides good surface properties for hepatocytes interaction, but in addition it is highly thermostable, which would permit steam sterilisation. No simple relationship, however, between the wettability of the membranes and their ability to support hepatocyte adhesion and function was found in this study.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/fisiologia , Fígado Artificial , Membranas Artificiais , Resinas Acrílicas/química , Caderinas/metabolismo , Adesão Celular/fisiologia , Tamanho Celular , Citoesqueleto/metabolismo , Hepatócitos/citologia , Humanos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Polímeros/química , Polivinil/química , Albumina Sérica/metabolismo , Propriedades de Superfície , Células Tumorais Cultivadas , Vinculina/metabolismo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA