Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Front Cardiovasc Med ; 11: 1373279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774662

RESUMO

Objective: Endothelial-to-mesenchymal transition (EndMT) is a transdifferentiation process in which endothelial cells (ECs) adopt a mesenchymal-like phenotype. Over the past few years, it became clear that EndMT can contribute to several cardiovascular pathologies. However, the molecular pathways underlying the development of EndMT remain incompletely understood. Since the epigenetic enzyme Enhancer of Zeste Homolog 2 (EZH2) and its concomitant mark H3K27Me3 have been shown to be elevated in many cardiovascular diseases that associate with EndMT, we hypothesized that H3K27Me3 is a determinant for the susceptibility of EndMT. Methods: To study the association between H3K27Me3 and EndMT, a knockdown model of EZH2 in human endothelial cells (HUVEC) was utilized to reduce H3K27Me3 abundance, followed by induction of EndMT using TGFß1. The expression of molecular markers of EndMT and fibrogenesis were analysed. Results: In cultured HUVECs, a reduction of H3K27Me3 abundance facilitates EndMT but mitigates fibrogenesis as shown by a decreased expression of collagen I and III. In HUVEC, H3K27Me3 abundance directly affects the expression of miR29c, a collagen-targeting miRNA. Additionally, knockdown of miR-29c in HUVEC with low H3K27Me3 abundance partly restored the expression of collagen I and III. Expectedly, in rats with perivascular fibrosis an increased abundance of H3K27Me3 associated with a decreased expression of miR-29c. Conclusion: our data shows that endothelial fibrogenesis underlies an epigenetic regulatory pathway and we demonstrate that a decreased abundance of H3K27Me3 in ECs blunts fibrogenesis in part in a miR-29c dependent manner. Therefore, a reduction of H3K27Me3 could serve as a novel therapeutical strategy to mitigate fibrogenesis and may prove to be beneficial in fibrogenic diseases including atherosclerosis, cardiac fibrosis, and PAH.

2.
Acta Biomater ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750915

RESUMO

Large skin injuries heal as scars. Stiffness gradually increases from normal skin to scar tissue (20x higher), due to excessive deposition and crosslinking of extracellular matrix (ECM) mostly produced by (myo)fibroblasts. Using a custom mold, skin-derived ECM hydrogels (dECM) were UV crosslinked after diffusion of ruthenium (Ru) to produce a Ru-dECM gradient hydrogel. The Ru diffusion gradient equates to a stiffness gradient and models physiology of the scarred skin. Crosslinking in Ru-dECM hydrogels results in a 23-fold increase in stiffness from a stiffness similar to that of normal skin. Collagen fiber density increases in a stiffness-dependent fashion while stress relaxation also alters, with one additional Maxwell element necessary for characterizing Ru-dECM. Alignment of fibroblasts encapsulated in hydrogels suggests that the stiffness gradient directs fibroblasts to orientate at ∼45 ° in regions below 120 kPa. In areas above 120 kPa, fibroblasts decrease the stiffness prior to adjusting their orientation. Furthermore, fibroblasts remodel their surrounding ECM in a gradient-dependent fashion, with rearrangement of cell-surrounding ECM in high-stiffness areas, and formation of interlaced collagen bundles in low-stiffness areas. Overall, this study shows that fibroblasts remodel their local environment to generate an optimal ECM mechanical and topographical environment. STATEMENT OF SIGNIFICANCE: This study developed a versatile in vitro model with a gradient stiffness using skin-derived ECM hydrogel with unchanged biochemical environment. Using Ruthenium crosslinking, a 20-fold stiffness increase was achieved as observed in fibrotic skin. The interaction between fibroblasts and matrix depends on changes in the matrix stiffness. The stiffness gradient directed the alignment of fibroblasts with ∼45° in regions with≤ 120 kPa. The cells in regions with the higher stiffness decreased stiffness first and then oriented themselves. Furthermore, fibroblasts remodeled surrounding ECM and regulated its mechanics in a gradient-dependent fashion to reach an optimal condition. Our study highlights the dynamic interplay between cells and surrounding matrix, shedding light on potential mechanisms and strategies to target scar formation and remodeling.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167020, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38244390

RESUMO

Liver sinusoidal endothelial cells (LSECs) play a crucial role in maintaining liver microcirculation and exchange of nutrients in the liver and are thought to be involved in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). The activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs) has been considered to be responsible for the onset of liver fibrosis and the aggravation of liver injury. However, the paracrine regulatory effects of LSECs in the development of MASLD, in particular the role of LSEC-derived extracellular vesicles (EVs) remains unclear. Therefore, the aim of the present study was to investigate the influence of LSEC-derived EVs on HSCs and KCs. Primary rat LSECs, HSCs and KCs were isolated from male Wistar rats. LSEC-derived EVs were isolated from conditioned medium by ultracentrifugation and analyzed by nanoparticle tracking analysis, and expression of specific markers. LSEC-derived EVs reduced the expression of activation markers in activated HSCs but did not affect quiescent HSCs. Also, LSEC-derived EVs suppressed proliferation of activated HSCs activation, as assessed by Xcelligence and BrdU assay. LSEC-derived EVs also increased the expression of inflammatory genes in HSCs that normally are lowly expression during their activation. In contrast, EVs decreased the expression of inflammatory genes in activated KCs. In summary, our results suggest that LSEC-derived EVs may attenuate the fibrogenic phenotype of activated HSCs and the inflammatory phenotype of KCs. Our results show promise for LSEC-derived EVs as therapeutic moieties to treat MASLD. In addition, these EVs might prove of diagnostic value.


Assuntos
Vesículas Extracelulares , Células de Kupffer , Ratos , Animais , Masculino , Células de Kupffer/metabolismo , Células Estreladas do Fígado/metabolismo , Células Endoteliais/metabolismo , Ratos Wistar , Fígado/metabolismo
4.
Am J Physiol Cell Physiol ; 326(1): C177-C193, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955339

RESUMO

Fibroblasts are the main producers of extracellular matrix (ECM) responsible for ECM maintenance and repair, a process often disrupted in chronic lung diseases. The accompanying mechanical changes adversely affect resident cells and overall lung function. Numerous models have been used to elucidate fibroblast behavior that are now evolving toward complex three-dimensional (3-D) models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from two-dimensional (2-D) to 3-D cell culture. This study compared the gene expression profiles of primary human lung fibroblasts from seven subjects with normal lung function, that were cultured for 24 h on 2-D collagen I-coated tissue culture plastic and in 3-D collagen I hydrogels, which are commonly used to mimic ECM in various models, from contraction assays to intricate organ-on-a-chip models. Comparing 3-D with 2-D cell culture, 6,771 differentially expressed genes (2,896 up, 3,875 down) were found; enriched gene sets within the downregulated genes, identified through Gene Set Enrichment Analysis and Ingenuity Pathway Analysis, were involved in the initiation of DNA replication which implied downregulation of fibroblast proliferation in 3-D. Observation of cells for 72 h in 2-D and 3-D environments confirmed the reduced progression through the cell cycle in 3-D. A focused analysis, examining the Hippo pathway and ECM-associated genes, showed differential patterns of gene expression in the 3-D versus 2-D culture. Altogether, the transcriptional response of fibroblasts cultured in 3-D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a complete switch from proliferation to ECM remodeling.NEW & NOTEWORTHY With the introduction of complex three-dimensional (3-D) lung models, comes a need for understanding cellular behavior in these models. We compared gene expression profiles of human lung fibroblasts grown on two-dimensional (2-D) collagen I-coated surfaces with those in 3-D collagen I hydrogels. RNA sequencing and subsequent pathway analyses showed decreased proliferation, increased extracellular matrix (ECM) remodeling, and altered Hippo signaling and ECM deposition-related gene signatures. These findings highlight unique responses of fibroblasts in 3-D models.


Assuntos
Matriz Extracelular , Pulmão , Humanos , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Hidrogéis/metabolismo
5.
Mater Today Bio ; 23: 100842, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942422

RESUMO

This study aimed to investigate the impact of fibroblasts (MRC-5) on the extracellular matrix (ECM) microenvironment of endothelial cells (ECs) during the vascularization of skin-derived ECM hydrogel in vitro. Two types of ECs were studied: human dermal microvascular endothelial cells (HMEC) and human pulmonary microvascular endothelial cells (HPMEC). Results showed that the presence of MRC-5 fibroblasts increased the stiffness of the hydrogel and led to larger fiber diameters and increased porosity. Extensive collagen fiber remodeling occurred in the ECM hydrogel with MRC-5 fibroblasts. Additionally, higher levels of fibulin-1 and fibronectin were deposited in the hydrogel when co-cultured with MRC-5 fibroblasts. These findings suggest that MRC-5 fibroblasts play a role in modifying the ECM microenvironment, promoting vascularization through dynamic ECM remodeling.

6.
Stem Cell Rev Rep ; 19(7): 2131-2140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300663

RESUMO

The secretome of adipose-derived stromal cells (ASC) is a heterogeneous mixture of components with a beneficial influence on cellular microenvironments. As such, it represents a cell-free alternative in regenerative medicine therapies. Pathophysiological conditions increase the therapeutic capacity of ASC and, with this, the benefits of the secretome. Such conditions can be partially mimicked in vitro by adjusting culturing conditions. Secretomics, the unbiased analysis of a cell secretome by mass spectrometry, is a powerful tool to describe the composition of ASC secretomes. In this proteomics databases review, we compared ASC secretomic studies to retrieve persistently reported proteins resulting from the most explored types of culturing conditions used in research, i.e., exposure to normoxia, hypoxia, or cytokines. Our comparisons identified only eight common proteins within ASC normoxic secretomes, no commonalities within hypoxic ASC secretomes, and only nine within secretomes of ASC exposed to proinflammatory cytokines. Within these, and regardless of the culturing condition that stimulated secretion, a consistent presence of extracellular matrix-related pathways associated with such proteins was identified. Confounders such as donors' age, sex, body mass index, the anatomical area where ASC were harvested, secretome collection method, data description, and how the data is shared with the scientific community are discussed as factors that might explain our outcomes. We conclude that standardization is imperative as the currently available ASC secretomic studies do not facilitate solid conclusions on the therapeutic value of different ASC secretomes.


Assuntos
Células-Tronco Mesenquimais , Secretoma , Humanos , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo , Citocinas/metabolismo , Hipóxia , Padrões de Referência
7.
Bioengineering (Basel) ; 10(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36978719

RESUMO

In recent decades, adipose tissue transplantation has become an essential treatment modality for tissue (volume) restoration and regeneration. The regenerative application of adipose tissue has only recently proven its usefulness; for example, the method is useful in reducing dermal scarring and accelerating skin-wound healing. The therapeutic effect is ascribed to the tissue stromal vascular fraction (tSVF) in adipose tissue. This consists of stromal cells, the trophic factors they secrete and the extracellular matrix (ECM), which have immune-modulating, pro-angiogenic and anti-fibrotic properties. This concise review focused on dermal regeneration using the following adipose-tissue components: adipose-tissue-derived stromal cells (ASCs), their secreted trophic factors (ASCs secretome), and the ECM. The opportunities of using a therapeutically functional scaffold, composed of a decellularized ECM hydrogel loaded with trophic factors of ASCs, to enhance wound healing are explored as well. An ECM-based hydrogel loaded with trophic factors combines all regenerative components of adipose tissue, while averting the possible disadvantages of the therapeutic use of adipose tissue, e.g., the necessity of liposuction procedures with a (small) risk of complications, the impossibility of interpatient use, and the limited storage options.

8.
Respir Res ; 24(1): 22, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681830

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage. Novel regenerative strategies are urgently awaited. Cultured mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental models of COPD, but differences between sources may impact on their potential use in therapeutic strategies in patients. AIM: To assess the transcriptome of lung-derived MSCs (LMSCs), bone marrow-derived MSCs (BM-MSC) and adipose-derived MSCs (AD-MSCs) from COPD patients and non-COPD controls. METHODS: We studied differences in gene expression profiles between the MSC-subtypes, as well as between COPD and control using RNA sequencing (RNA-seq). RESULTS: We show that besides heterogeneity between donors, MSCs from different sources have strongly divergent gene signatures. The growth factors FGF10 and HGF were predominantly expressed in LMSCs. MSCs from all sources displayed altered expression profiles in COPD, with most pronounced significantly up- and downregulated genes in MSCs from adipose tissue. Pathway analysis revealed that the most differentially expressed genes in COPD-derived AD-MSCs are involved in extracellular matrix (ECM) binding and expression. In LMSCs, the gene that differed most strongly between COPD and control was CSGALNACT1, an ECM modulating gene. CONCLUSION: Autologous MSCs from COPD patients display abnormalities with respect to their transcriptome, which were surprisingly most profound in MSCs from extrapulmonary sources. LMSCs may be optimally equipped for lung tissue repair because of the expression of specific growth factor genes.


Assuntos
Células-Tronco Mesenquimais , Doença Pulmonar Obstrutiva Crônica , Humanos , Transcriptoma , Medula Óssea , Tecido Adiposo , Pulmão , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Diferenciação Celular
9.
Gels ; 8(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354636

RESUMO

Background: Angiogenesis is a crucial process in physiological maintenance and tissue regeneration. To understand the contribution of angiogenesis, it is essential to replicate this process in an environment that reproduces the biochemical and physical properties which are largely governed by the extracellular matrix (ECM). We investigated vascularization in cardiac left ventricular ECM hydrogels to mimic post-myocardial repair. We set out to assess and compare different destructive and non-destructive methods, optical as well as non-optical, to visualize angiogenesis and associated matrix remodeling in myocardial ECM hydrogels. Methods: A total of 100,000, 300,000, and 600,000 Human Pulmonary Microvascular Endothelial Cells (HPMEC) were seeded in left ventricular cardiac ECM hydrogel in 48-well plates. After 1, 7, and 14 days of culture, the HPMEC were imaged by inverted fluorescence microscopy and 3D confocal laser scanning microscopy (Zeiss Cell Discoverer 7). In addition, cell-seeded ECM hydrogels were scanned by optical coherence tomography (OCT). Fixed and paraffin-embedded gels were thin-sectioned and assessed for ECM components via H&E, picrosirius red histochemical staining, and immunostaining for collagen type I. ImageJ-based densitometry was used to quantify vascular-like networks and GraphPad was used for statistical analyses. Results: Qualitative analyses were realized through fluoromicrographs obtained by the confocal laser scanning microscope which allowed us to visualize the extensive vascular-like networks that readily appeared at all seeding densities. Quantification of networks was only possible using fluoromicrographs from inverted microscopy. These showed that, after three days, the number of master junctions was seeding density-dependent. The resolution of optical coherence tomography was too low to distinguish between signals caused by the ECM and cells or networks, yet it did show that gels, irrespective of cells, were heterogeneous. Interestingly, (immuno)histochemistry could clearly distinguish between the cast cardiac-derived matrix and newly deposited ECM in the hydrogels. The H&E staining corroborated the presence of vascular-like network structures, albeit that sectioning inevitably led to the loss of 3D structure. Conclusions: Except for OCT, all methods had complementary merit and generated qualitative and quantitative data that allowed us to understand vascular network formation in organ-derived ECM hydrogels.

10.
Heliyon ; 8(3): e09128, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35846468

RESUMO

Background: Browning of white adipose tissue is associated with elevated resting metabolic rates and is considered to be one of the indispensable causes of hypermetabolism in burn patients. Hypermetabolism means increased resting energy expenditure, raised body temperature and acute-phase proteins. Persistently elevated levels of circulating stress hormones have been reported to induce browning of subcutaneous white adipose tissue. The lytic cocktail is a combination of medicines pethidine, chlorpromazine, and promethazine that has been used clinically in sedation for the management of patients. As reported this sedative treatment can reduce the expression of catecholamines in major burn rats. Thus, in this paper we focused on the effects of lytic cocktail in the regulation of white adipose tissue browning and hypermetabolism and we further investigated the underlying mechanism. Methods: A 30% total body surface area (TBSA) Ⅲ degree scald rat model was used for this study. The rats were randomly divided into a sham scald group, a scalding with immediate resuscitation group, and a group of scalding with immediate resuscitation and lytic cocktail treatment. The levels of norepinephrine and epinephrine in plasma were dynamically detected. Changes of the rat body weight and food intake were recorded and compared as indexes of metabolism responses after post-scalding. For the study of white adipose tissue browning, inguinal adipose tissue was used. Metabolic changes, while indicatives of white fat browning were measured by PET/CT. The expression of white adipose browning related proteins and the changes of mitochondria number were used to assess browning of inguinal adipose. Results: The level of plasma catecholamines norepinephrine and epinephrine in the lytic cocktail-treated group was significantly lower than the other two groups. Morphology and PET/CT showed that the inguinal white adipose browning was inhibited in the lytic cocktail treated group, whereas scalding with immediate resuscitation group showed browning of white adipose. The number of mitochondria, the expressions of white adipose browning related proteins in the lytic cocktail group were also significantly lower than that of the group of scalding with immediate resuscitation. Conclusion: By reducing expression of heat-related proteins, the application of lytic cocktail medicines inhibits the white adipose tissue browning, which suppresses hypermetabolism in scalded rats. The mechanism might be related to decreased expression levels of stress hormones induced by lytic cocktail. This research suggests that lytic cocktails may be an effective treatment for hypermetabolism after severe burn injury.

11.
Trials ; 23(1): 575, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854356

RESUMO

BACKGROUND: In the last decades, autologous fat grafting has been used to treat adherent dermal scars. The observed regenerative and scar-reducing properties have been mainly ascribed to the tissue-derived stromal vascular fraction (tSVF) in adipose tissue. Adipose tissue's components augment local angiogenesis and mitosis in resident tissue cells. Moreover, it promotes collagen remodeling. We hypothesize that tSVF potentiates fat grafting-based treatment of adherent scars. Therefore, this study aims to investigate the effect of tSVF-enriched fat grafting on scar pliability over a 12-month period. METHODS AND DESIGN: A clinical multicenter non-randomized early phase trial will be conducted in two dedicated Dutch Burn Centers (Red Cross Hospital, Beverwijk, and Martini Hospital, Groningen). After informed consent, 46 patients (≥18 years) with adherent scars caused by burns, necrotic fasciitis, or degloving injury who have an indication for fat grafting will receive a sub-cicatricic tSVF-enriched fat graft. The primary outcome is the change in scar pliability measured by the Cutometer between pre- and 12 months post-grafting. Secondary outcomes are scar pliability (after 3 months), scar erythema, and melanin measured by the DSM II Colormeter; scar quality assessed by the patient and observer scales of the Patient and Observer Scar Assessment Scale (POSAS) 2.0; and histological analysis of scar biopsies (voluntary) and tSVF quality and composition. This study has been approved by the Dutch Central Committee for Clinical Research (CCMO), NL72094.000.20. CONCLUSION: This study will test the clinical efficacy of tSVF-enriched fat grafting to treat dermal scars while the underlying working mechanism will be probed into too. TRIAL REGISTRATION: Dutch Trial Register NL 8461. Registered on 16 March 2020.


Assuntos
Cicatriz , Fração Vascular Estromal , Tecido Adiposo , Cicatriz/diagnóstico , Cicatriz/etiologia , Cicatriz/patologia , Humanos , Transplante Autólogo/efeitos adversos , Resultado do Tratamento
12.
Biomater Adv ; 139: 212967, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882126

RESUMO

Dermal wound healing relies on the properties of the extracellular matrix (ECM). Thus, hydrogels that replicate skin ECM have reached clinical application. After a dermal injury, a transient, biodegradable fibrin clot is instrumental in wound healing. Human plasma, and its main constituent, fibrin would make a suitable biomaterial for improving wound healing and processed as hydrogels albeit with limited mechanical strength. To overcome this, plasma-agarose (PA) composite hydrogels have been developed and used to prepare diverse bioengineered tissues. To date, little is known about the influence of variable agarose concentrations on the viscoelastic properties of PA hydrogels and their correlation to cell biology. This study reports the characterization of the viscoelastic properties of different concentrations of agarose in PA hydrogels: 0 %, 0.5 %, 1 %, 1.5 %, and 2 % (w/v), and their influence on the cell number and mitochondrial activity of human dermal fibroblasts. Results show that agarose addition increased the stiffness, relaxation time constants 1 (τ1) and 2 (τ2), and fiber diameter, whereas the porosity decreased. Changes in cell metabolism occurred at the early stages of culturing and correlated to the displacement of fast (τ1) and intermediate (τ2) Maxwell elements. Fibroblasts seeded in low PA concentrations spread faster during 14 d than cells cultured in higher agarose concentrations. Collectively, these results confirm that PA viscoelasticity and hydrogel architecture strongly influenced cell behavior. Therefore, viscoelasticity is a key parameter in the design of PA-based implants.


Assuntos
Hidrogéis , Engenharia Tecidual , Fibrina , Fibroblastos/metabolismo , Humanos , Hidrogéis/farmacologia , Sefarose , Engenharia Tecidual/métodos
13.
ACS Omega ; 7(21): 17528-17537, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664586

RESUMO

Magnesium-based nanoparticles have shown promise in regenerative therapies in orthopedics and the cardiovascular system. Here, we set out to assess the influence of differently functionalized Mg nanoparticles on the cellular players of wound healing, the first step in the process of tissue regeneration. First, we thoroughly addressed the physicochemical characteristics of magnesium hydroxide nanoparticles, which exhibited low colloidal stability and strong aggregation in cell culture media. To address this matter, magnesium hydroxide nanoparticles underwent surface functionalization by 3-aminopropyltriethoxysilane (APTES), resulting in excellent dispersible properties in ethanol and improved colloidal stability in physiological media. The latter was determined as a concentration- and time-dependent phenomenon. There were no significant effects on THP-1 macrophage viability up to 1.500 µg/mL APTES-coated magnesium hydroxide nanoparticles. Accordingly, increased media pH and Mg2+ concentration, the nanoparticles dissociation products, had no adverse effects on their viability and morphology. HDF, ASCs, and PK84 exhibited the highest, and HUVECs, HPMECs, and THP-1 cells the lowest resistance toward nanoparticle toxic effects. In conclusion, the indicated high magnesium hydroxide nanoparticles biocompatibility suggests them a potential drug delivery vehicle for treating diseases like fibrosis or cancer. If delivered in a targeted manner, cytotoxic nanoparticles could be considered a potential localized and specific prevention strategy for treating highly prevalent diseases like fibrosis or cancer. Looking toward the possible clinical applications, accurate interpretation of in vitro cellular responses is the keystone for the relevant prediction of subsequent in vivo biological effects.

14.
Biomater Adv ; 134: 112693, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35581088

RESUMO

One of the most common magnesium (Mg) applications in the biomedical field is in cardiovascular stents. Although Mg is an essential element for homeostasis, Mg is highly reactive, and locally high Mg concentrations can have toxic effects on the surrounding tissue. One strategy to circumvent the Mg toxicity is using coatings or surface modifications that prevent the leaching of excessive Mg ions. In the current study, commercially pure magnesium (c.p Mg) was modified through plasma electrolytic oxidation (PEO) to produce a protective coating primarily composed of Mg oxide (MgO) and Mg hydroxide (Mg(OH)2), which limits leaching of free Mg ions from the base material. As we intend to use this material to produce vascular stents, a biological evaluation of its performance is warranted. Primary human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) were the study object. The leaching of free Mg ions from the oxidized materials was investigated, as was its effect on local pH changes. We also investigated the influence of corrosion products, the effects of elevated free Mg concentrations and pH on the cellular behavior on the integrity of monolayers of HUVECs was studied in a static and dynamic model. Results showed that the harmful effect of Mg on cells due to changes in pH and a high concentration of Mg ions could decrease with the influence of flow diffusing corrosion products such as MgO, Mg(OH)2, and H2 among the system. Independently, Mg concentration and pH affected the cell activity of SMCs and HUVECs. Finally, to investigate the influence of leachables on vasomotor function, we exposed porcine aortic rings to PEO-modified Mg stents and assessed endothelial-dependent relaxation. Pure Mg reduced vasorelaxation from 100% in control samples to 30%. Oppositely, PEO-modified Mg did not affect the vasomotor function. Overall, we conclude from this study that the use of PEO coatings reduces the degradation rate of the material reducing the Mg release resulting in better cell viability and vessel function compared to the bare material.


Assuntos
Ligas , Magnésio , Ligas/farmacologia , Animais , Materiais Revestidos Biocompatíveis/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Magnésio/farmacologia , Hidróxido de Magnésio , Óxido de Magnésio , Suínos
15.
Acta Biomater ; 147: 50-62, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605955

RESUMO

Extracellular matrix (ECM) is a dynamic network of proteins, proteoglycans and glycosaminoglycans, providing structure to the tissue and biochemical and biomechanical instructions to the resident cells. In fibrosis, the composition and the organization of the ECM are altered, and these changes influence cellular behaviour. Biochemical (i. e. protein composition) and biomechanical changes in ECM take place simultaneously in vivo. Investigating these changes individually in vitro to examine their (patho)physiological effects has been difficult. In this study, we generated an in vitro model to reflect the altered mechanics of a fibrotic microenvironment through applying fibre crosslinking via ruthenium/sodium persulfate crosslinking on native lung ECM-derived hydrogels. Crosslinking of the hydrogels without changing the biochemical composition of the ECM resulted in increased stiffness and decreased viscoelastic stress relaxation. The altered stress relaxation behaviour was explained using a generalized Maxwell model. Fibre analysis of the hydrogels showed that crosslinked hydrogels had a higher percentage of matrix with a high density and a shorter average fibre length. Fibroblasts seeded on ruthenium-crosslinked lung ECM-derived hydrogels showed myofibroblastic differentiation with a loss of spindle-like morphology together with greater α-smooth muscle actin (α-SMA) expression, increased nuclear area and circularity without any decrease in the viability, compared with the fibroblasts seeded on the native lung-derived ECM hydrogels. In summary, ruthenium crosslinking of native ECM-derived hydrogels provides an exciting opportunity to alter the biomechanical properties of the ECM-derived hydrogels while maintaining the protein composition of the ECM to study the influence of mechanics during fibrotic lung diseases. STATEMENT OF SIGNIFICANCE: Fibrotic lung disease is characterized by changes in composition and excessive deposition of extracellular matrix (ECM). ECM fibre structure also changes due to crosslinking, which results in mechanical changes. Separating the changes in composition and mechanical properties has been difficult to date. In this study, we developed an in vitro model that allows alteration of the mechanical changes alone by applying fibre crosslinking in native lung ECM-derived hydrogels. Characterisations of the crosslinked hydrogels indicated the model mimicked mechanical properties of fibrotic lung tissue and reflected altered fibre organisation. This ECM-based fibrosis model provides a method to preserve the native protein composition while altering the mechanical properties providing an important tool, not only for lung but also other organ fibrosis.


Assuntos
Hidrogéis , Rutênio , Fenômenos Biomecânicos , Matriz Extracelular/metabolismo , Fibrose , Humanos , Hidrogéis/química , Rutênio/farmacologia
16.
Stem Cells Dev ; 31(19-20): 630-640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35583223

RESUMO

Insufficient vascularization is a recurring cause of impaired pedicled skin flap healing. The administration of adipose tissue-derived stromal cells' (ASCs') secretome is a novel approach to augment vascularization. Yet, the secretome comprised of soluble factors that require a sustained-release vehicle to increase residence time. We hypothesized that administration of a hydrogel derived from decellularized extracellular matrix (ECM) of porcine skin with bound trophic factors from ASCs enhances skin flap viability and wound repair in a rat model. Porcine skin was decellularized and pepsin-digested to form a hydrogel at 37°C. Conditioned medium (CMe) of human ASC was collected, concentrated 20-fold, and mixed with the hydrogel. Sixty Wistar rats were included. A dorsal skin flap (caudal based) of 3 × 10 cm was elevated for topical application of DMEM (group I), a prehydrogel with or without ASC CMe (groups II and III), or ASC CMe (group IV). After 7, 14, and 28 days, perfusion was measured, and skin flaps were harvested for wound healing assessment and immunohistochemical analysis. Decellularized skin ECM hydrogel contained negligible amounts of DNA (11.6 ± 0.6 ng/mg), was noncytotoxic and well tolerated by rats. Irrespective of ASC secretome, ECM hydrogel application resulted macroscopically and microscopically in similar dermal wound healing in terms of proliferation, immune response, and matrix remodeling as the control group. However, ASC CMe alone increased vessel density after 7 days. Porcine skin-derived ECM hydrogels loaded with ASC secretome are noncytotoxic but demand optimization to significantly augment wound healing of skin flaps.


Assuntos
Hidrogéis , Pepsina A , Suínos , Ratos , Humanos , Animais , Hidrogéis/farmacologia , Meios de Cultivo Condicionados/metabolismo , Pepsina A/metabolismo , Preparações de Ação Retardada/metabolismo , Secretoma , Ratos Wistar , Tecido Adiposo/metabolismo , Células Estromais/metabolismo
17.
Aesthet Surg J ; 42(12): NP711-NP727, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-35576617

RESUMO

BACKGROUND: For decades, facial fat grafting has been used in clinical practice for volume restoration. The main challenge of this technique is variable volume retention. The addition of supplements to augment fat grafts and increase volume retention has been reported in recent years. OBJECTIVES: The aim of this systematic review was to investigate which supplements increase volume retention in facial fat grafting as assessed by volumetric outcomes and patient satisfaction. METHODS: Embase, Medline, Ovid, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar were searched up to November 30, 2020. Only studies assessing volume after facial fat grafting with supplementation in human subjects were included. Outcomes of interest were volume or patient satisfaction. The quality of the studies was assessed with the Effective Public Health Practice Project tool. RESULTS: After duplicates were removed 3724 studies were screened by title and abstract. After reading 95 full-text articles, 27 studies were eligible and included for comparison. Supplementation comprised of platelet-rich plasma, platelet-rich fibrin, adipose tissue-derived stromal cells or bone marrow-derived stromal cells, cellular or tissue stromal vascular fraction, or nanofat. In 13 out of 22 studies the supplemented group showed improved volumetric retention and 5 out of 16 studies showed greater satisfaction. The scientific quality of the studies was rated as weak for 20 of 27 studies, moderate for 6 of 27 studies, and strong for 1 study. CONCLUSIONS: It remains unclear if additives contribute to facial fat graft retention and there is a need to standardize methodology.


Assuntos
Tecido Adiposo , Sobrevivência de Enxerto , Humanos , Tecido Adiposo/transplante , Face/cirurgia , Células Estromais/transplante , Suplementos Nutricionais
19.
Eur Respir Rev ; 31(163)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35264410

RESUMO

The extracellular matrix (ECM) is the scaffold that provides structure and support to all organs, including the lung; however, it is also much more than this. The ECM provides biochemical and biomechanical cues to cells that reside or transit through this micro-environment, instructing their responses. The ECM structure and composition changes in chronic lung diseases; how such changes impact disease pathogenesis is not as well understood. Cells bind to the ECM through surface receptors, of which the integrin family is one of the most widely recognised. The signals that cells receive from the ECM regulate their attachment, proliferation, differentiation, inflammatory secretory profile and survival. There is extensive evidence documenting changes in the composition and amount of ECM in diseased lung tissues. However, changes in the topographical arrangement, organisation of the structural fibres and stiffness (or viscoelasticity) of the matrix in which cells are embedded have an undervalued but strong impact on cell phenotype. The ECM in diseased lungs also changes in physical and biomechanical ways that drive cellular responses. The characteristics of these environments alter cell behaviour and potentially orchestrate perpetuation of lung diseases. Future therapies should target ECM remodelling as much as the underlying culprit cells.


Assuntos
Matriz Extracelular , Pneumopatias , Diferenciação Celular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Pulmão/metabolismo , Pneumopatias/metabolismo
20.
Aesthet Surg J ; 42(4): NP244-NP256, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34270698

RESUMO

BACKGROUND: Autologous lipofilling is an emerging procedure to treat and possibly reverse dermal scars and to reduce scar-related pain, but its efficacy and mechanisms are poorly understood. OBJECTIVES: The aim of this study was to test the hypothesis that repeated lipografts reverse dermal scars by reinitiation of wound healing. METHODS: In a prospective, non-placebo-controlled clinical study, 27 adult patients with symptomatic scars were given 2 lipofilling treatments at 3-month intervals. As primary outcome, clinical effects were measured with the Patient and Observer Scar Assessment Scale (POSAS). Scar biopsies were taken before and after treatments to assess scar remodeling at a cellular level. RESULTS: Twenty patients completed the study. Patients' scars improved after lipofilling. The total POSAS scores (combined patient and observer scores) decreased from 73.2  [14.7] points (mean [standard deviation]) pretreatment to 46.1 [14.0] and 32.3 [13.2] points after the first and second lipofilling treatment, respectively. Patient POSAS scores decreased from 37.3 [8.8] points to 27.2 [11.3] and 21.1 [11.4] points, whereas observer POSAS scores decreased from 35.9 [9.5] points to 18.9 [6.0] and 11.3 [4.5] points after the first and second treatment, respectively. After each lipofilling treatment, T lymphocytes, mast cells, and M2 macrophages had invaded scar tissue and were associated with increased vascularization. In addition, the scar-associated epidermis showed an increase in epidermal cell proliferation to levels similar to that normal in skin. Moreover, lipofilling treatment caused normalization of the extracellular matrix organization towards that of normal skin. CONCLUSIONS: Autologous lipofilling improves the clinical outcome of dermal scars through the induction of a pro-regenerative immune response, increased vascularization, and epidermal proliferation and remodeling of scar tissue extracellular matrix.


Assuntos
Cicatriz , Pele , Adulto , Cicatriz/etiologia , Cicatriz/terapia , Humanos , Imunidade , Estudos Prospectivos , Pele/patologia , Transplante Autólogo/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA