Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(6): 063601, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491180

RESUMO

We report on the realization and verification of quantum entanglement between a nitrogen-vacancy electron spin qubit and a telecom-band photonic qubit. First we generate entanglement between the spin qubit and a 637 nm photonic time-bin qubit, followed by photonic quantum frequency conversion that transfers the entanglement to a 1588 nm photon. We characterize the resulting state by correlation measurements in different bases and find a lower bound to the Bell state fidelity of ≥0.77±0.03. This result presents an important step towards extending quantum networks via optical fiber infrastructure.

2.
Opt Express ; 22(13): 16585-94, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977907

RESUMO

Silicon optical microring resonators (MRRs) are sensitive devices that can be used for biosensing. We present a novel biosensing platform based on the application of polyelectrolyte (PE) layers on such MRRs. The top PE layer was covalently labeled with biotin to ensure binding sites for antibodies via a streptavidin-biotin binding scheme. Monitoring the shift in the microring resonance wavelength allows real-time, highly sensitive detection of the biomolecular interaction.


Assuntos
Técnicas Biossensoriais/instrumentação , Biotina/análise , Poliaminas/análise , Silício/química , Estreptavidina/análise
3.
Opt Lett ; 37(4): 479-81, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344079

RESUMO

Recently there has been growing interest in sensing by means of optical microring resonators in photonic integrated circuits that are fabricated in silicon-on-insulator (SOI) technology. Taillaert et al. [Proc. SPIE 6619, 661914 (2007)] proposed the use of a silicon-waveguide-based ring resonator as a strain gauge. However, the strong lateral confinement of the light in SOI waveguides and its corresponding modal dispersion where not taken into account. We present a theoretical understanding, as well as experimental results, of strain applied on waveguide-based microresonators, and find that the following effects play important roles: elongation of the racetrack length, modal dispersion of the waveguide, and the strain-induced change in effective refractive index.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA