Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3662, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842470

RESUMO

High-risk human papillomavirus (HPV) infection is one of the first events in the process of carcinogenesis in cervical and head and neck cancers. The expression of the viral oncoproteins E6 and E7 are essential in this process by inactivating the tumor suppressor proteins p53 and Rb, respectively, in addition to their interactions with other host proteins. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) have been found to be dysregulated in several cancers, suggesting an important role in tumorigenesis. In order to identify host lncRNAs affected by HPV infection, we expressed the high-risk HPV-16 E6 oncoprotein in primary human keratinocytes and measured the global lncRNA expression profile by high-throughput sequencing (RNA-seq). We found several host lncRNAs differentially expressed by E6 including GAS5, H19, and FAM83H-AS1. Interestingly, FAM83H-AS1 was found overexpressed in HPV-16 positive cervical cancer cell lines in an HPV-16 E6-dependent manner but independently of p53 regulation. Furthermore, FAM83H-AS1 was found to be regulated through the E6-p300 pathway. Knockdown of FAM83H-AS1 by siRNAs decreased cellular proliferation, migration and increased apoptosis. FAM83H-AS1 was also found to be altered in human cervical cancer tissues and high expression of this lncRNA was associated with worse overall survival, suggesting an important role in cervical carcinogenesis.


Assuntos
Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , RNA Longo não Codificante/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/virologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Prognóstico , Análise de Sequência de RNA , Análise de Sobrevida , Regulação para Cima , Neoplasias do Colo do Útero/genética
2.
Am J Physiol Cell Physiol ; 315(1): C10-C20, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561662

RESUMO

Attenuated Ca2+-activated Cl- secretion has previously been observed in the model of dextran sulfate sodium (DSS)-induced colitis. Prior studies have implicated dysfunctional muscarinic signaling from basolateral membranes as the potential perpetrator leading to decreased Ca2+-activated Cl- secretion. However, in our chronic model of DSS-colitis, cholinergic receptor muscarinic 3 ( Chrm3) transcript (1.028 ± 0.12 vs. 1.029 ± 0.27, P > 0.05) and CHRM3 protein expression (1.021 ± 0.24 vs. 0.928 ± 0.09, P > 0.05) were unchanged. Therefore, we hypothesized that decreased carbachol (CCH)-stimulated Cl- secretion in DSS-induced colitis could be attributed to a loss of Ca2+-activated Cl- channels (CaCC) in apical membranes of colonic epithelium. To establish this chemically-induced colitis, Balb/C mice were exposed to 4% DSS for five alternating weeks to stimulate a more moderate, chronic colitis. Upon completion of the protocol, whole thickness sections of colon were mounted in an Ussing chamber under voltage-clamp conditions. DSS-induced colitis demonstrated a complete inhibition of basolateral administration of CCH-stimulated Cl- secretion that actually displayed a reversal in polarity (15.40 ± 2.22 µA/cm2 vs. -2.47 ± 0.25 µA/cm2). Western blotting of potential CaCCs, quantified by densitometric analysis, demonstrated no change in bestrophin-2 and cystic fibrosis transmembrane regulator, whereas anoctamin-1 [ANO1, transmembrane protein 16A (TMEM16A)] was significantly downregulated (1.001 ± 0.13 vs. 0.510 ± 0.12, P < 0.05). Our findings indicate that decreased expression of TMEM16A in DSS-induced colitis contributes to the decreased Ca2+-activated Cl- secretion in murine colon.


Assuntos
Anoctamina-1/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Colite/metabolismo , Colo/metabolismo , Regulação para Baixo/fisiologia , Animais , Bestrofinas/metabolismo , Carbacol/farmacologia , Canais de Cloreto/metabolismo , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Fibrose Cística/metabolismo , Sulfato de Dextrana/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor Muscarínico M3/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(25): E4961-E4970, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584122

RESUMO

The reversible state of proliferative arrest known as "cellular quiescence" plays an important role in tissue homeostasis and stem cell biology. By analyzing the expression of miRNAs and miRNA-processing factors during quiescence in primary human fibroblasts, we identified a group of miRNAs that are induced during quiescence despite markedly reduced expression of Exportin-5, a protein required for canonical miRNA biogenesis. The biogenesis of these quiescence-induced miRNAs is independent of Exportin-5 and depends instead on Exportin-1. Moreover, these quiescence-induced primary miRNAs (pri-miRNAs) are modified with a 2,2,7-trimethylguanosine (TMG)-cap, which is known to bind Exportin-1, and knockdown of Exportin-1 or trimethylguanosine synthase 1, responsible for (TMG)-capping, inhibits their biogenesis. Surprisingly, in quiescent cells Exportin-1-dependent pri-miR-34a is present in the cytoplasm together with a small isoform of Drosha, implying the existence of a different miRNA processing pathway in these cells. Our findings suggest that during quiescence the canonical miRNA biogenesis pathway is down-regulated and specific miRNAs are generated by an alternative pathway to regulate genes involved in cellular growth arrest.


Assuntos
Vias Biossintéticas/genética , Proliferação de Células/genética , Carioferinas/genética , MicroRNAs/genética , Receptores Citoplasmáticos e Nucleares/genética , Vias Biossintéticas/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citoplasma/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Guanosina/análogos & derivados , Guanosina/farmacologia , Células HEK293 , Células HeLa , Humanos , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA