Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992953

RESUMO

Two extremely halophilic archaeal strains, designated SB29T and SB3T, were isolated from the brine-seawater interface of Discovery Deep in the Red Sea. Cells of both strains were pleomorphic (irregular polyhedrals, ovals, and rods) and stained Gram-negative; colonies were pigmented pink. The sequence similarity of the 16S rRNA gene of strain SB29T with that of its most closely related validly described species (Hfx. sulfurifontis DSM 16227T) and that of strain SB3T with its closest validly described relative (Hfx. denitrificans ATCC 35960T) was 98.1% and 98.6%, respectively. The incomplete draft genomes of SB29T and SB3T are 3,871,125 bp and 3,904,985 bp in size, respectively, and their DNA G + C contents are 60.75% and 65.64%, respectively. The highest ANI values between the genomes of SB29T and SB3T and the most closely related genomes in GenBank were determined as 82.6% (Hfx. sulfurifontis ATCC BAA-897T, GenBank accession no. GCA_000337835.1) and 92.6% (Haloferax denitrificans ATCC 35960T, GenBank accession no. GCA_000337795.1), respectively. These data indicate that the two new isolates cannot be classified into any recognized species of the genus Haloferax, and, therefore, two novel species of the genus Haloferax are proposed: Haloferax profundi sp. nov. (type strain SB29T = JCM 19567T = CGMCC 1.14960T) and Haloferax marisrubri sp. nov. (type strain SB3T = JCM 19566T = CGMCC 1.14958T).

2.
Water Res ; 143: 10-18, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29933181

RESUMO

Anaerobic ammonium-oxidizing (anammox) bacteria are well known for their aggregation ability. However, very little is known about cell surface physicochemical properties of anammox bacteria and thus their aggregation abilities have not been quantitatively evaluated yet. Here, we investigated the aggregation abilities of three different anammox bacterial species: "Candidatus Brocadia sinica", "Ca. Jettenia caeni" and "Ca. Brocadia sapporoensis". Planktonic free-living enrichment cultures of these three anammox species were harvested from the membrane bioreactors (MBRs). The physicochemical properties (e.g., contact angle, zeta potential, and surface thermodynamics) were analyzed for these anammox bacterial species and used in the extended DLVO theory to understand the force-distance relationship. In addition, their extracellular polymeric substances (EPSs) were characterized by X-ray photoelectron spectroscopy and nuclear magnetic resonance. The results revealed that the "Ca. B. sinica" cells have the most hydrophobic surface and less hydrophilic functional groups in EPS than other anammox strains, suggesting better aggregation capability. Furthermore, aggregate formation and anammox bacterial populations were monitored when planktonic free-living cells were cultured in up-flow column reactors under the same conditions. Rapid development of microbial aggregates was observed with the anammox bacterial population shifts to a dominance of "Ca. B. sinica" in all three reactors. The dominance of "Ca. B. sinica" could be explained by its better aggregation ability and the superior growth kinetic properties (higher growth rate and affinity to nitrite). The superior aggregation ability of "Ca. B. sinica" indicates significant advantages (efficient and rapid start-up of anammox reactors due to better biomass retention as granules and consequently stable performance) in wastewater treatment application.


Assuntos
Bactérias/química , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/genética , Biomassa , Floculação , Espectroscopia de Ressonância Magnética , Nitritos/metabolismo , Oxirredução , Espectroscopia Fotoeletrônica , Filogenia , Plâncton , Eliminação de Resíduos Líquidos/instrumentação
3.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668882

RESUMO

Hopanoids, including the extended side chain-containing bacteriohopanepolyols, are bacterial lipids found abundantly in the geological record and across Earth's surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here, we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.


Assuntos
Bactérias/metabolismo , Metabolismo dos Lipídeos/fisiologia , Nitritos/metabolismo , Triterpenos/metabolismo , Bactérias/genética , Oceano Índico , Metagenômica , Oxigênio/metabolismo , Filogenia , Água do Mar/microbiologia
4.
ISME J ; 12(1): 59-76, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28895945

RESUMO

Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.


Assuntos
Antozoários/microbiologia , Bactérias/genética , Proteínas de Bactérias/genética , Carbono/metabolismo , Plâncton/genética , Fatores de Virulência/genética , Animais , Antozoários/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/análise , Recifes de Corais , Plâncton/isolamento & purificação , Plâncton/metabolismo , Água do Mar/análise , Água do Mar/microbiologia , Fatores de Virulência/metabolismo
5.
Int J Syst Evol Microbiol ; 67(11): 4358-4364, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28984559

RESUMO

Strain SJ5A-1T, a Gram-stain-negative, coccus-shaped, non-motile, aerobic bacterium, was isolated from the brine-seawater interface of the Erba Deep in the Red Sea, Saudi Arabia. The colonies of strain SJ5A-1T have a beige to pale-brown pigmentation, are approximately 0.5-0.7 µm in diameter, and are catalase and oxidase positive. Growth occurred optimally at 30-33 °C, pH 7.0-7.5, and in the presence of 9.0-12.0 % NaCl (w/v). Phylogenetic analysis of the 16S rRNA gene indicates that strain SJ5A-1T is a member of the genus Ponticoccus within the family Rhodobacteraceae. Ponticoccus litoralis DSM 18986T is the most closely related described species based on 16S rRNA gene sequence identity (96.7 %). The DNA-DNA hybridization value between strain SJ5A-1T and P. litoralis DSM 18986T was 36.7 %. The major respiratory quinone of strain SJ5A-1T is Q-10; it predominantly uses the fatty acids C18 : 1 (54.2 %), C18 : 0 (11.2 %), C16 : 0 (8.6 %), 11-methyl C18 : 1ω7c (7.7 %), C19 : 0cyclo ω8c (3.3 %), and C12 : 1 3-OH (3.5 %), and its major polar lipids are phosphatidylethanolamine, phosphatidylglycerol, phosphocholine, an unknown aminolipid, an unknown phospholipid and two unknown lipids. The genome draft of strain SJ5A-1T as presented here is 4 562 830 bp in size and the DNA G+C content is 68.0 mol%. Based on phenotypic, phylogenetic and genotypic data, strain SJ5A-1T represents a novel species in the genus Ponticoccus, for which we propose the name Ponticoccus marisrubri sp. nov. The type strain of P. marisrubri is SJ5A-1T (=JCM 19520T=ACCC19863T).


Assuntos
Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Oceano Índico , Hibridização de Ácido Nucleico , Fosfatidilgliceróis/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Arábia Saudita , Análise de Sequência de DNA , Ubiquinona/química
6.
Int J Syst Evol Microbiol ; 67(11): 4624-4631, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29022541

RESUMO

Two moderately halophilic marine bacterial strains of the family Rhodobacteraceae, designated ZGT108T and ZGT118T, were isolated from the brine-seawater interface at Erba Deep in the Red Sea (Saudi Arabia). Cells of both strains were aerobic, rod-shaped, non-motile, and Gram-stain-negative. The sequence similarity of the 16S rRNA genes of strains ZGT108T and ZGT118T was 94.9 %. The highest 16S rRNA gene sequence similarity of strain ZGT108T to its closest relative, Ruegeria conchae JCM 17315T, was 98.9 %, while the 16S rRNA gene of ZGT118T was most closely related to that of Ruegeria intermedia LMG 25539T (97.7 % similarity). The sizes of the draft genomes as presented here are 4 258 055 bp (strain ZGT108T) and 4 012 109 bp (strain ZGT118T), and the G+C contents of the draft genomes are 56.68 mol% (ZGT108T) and 62.94 mol% (ZGT108T). The combined physiological, biochemical, phylogenetic and genotypic data supported placement of both strains in the genus Ruegeria and indicated that the two strains are distinct from each other as well as from all other members in the genus Ruegeria. This was also confirmed by low DNA-DNA hybridization values (<43.6 %) and low ANI values (<91.8 %) between both strains and the most closely related Ruegeria species. Therefore, we propose two novel species in the genus Ruegeria to accommodate these novel isolates: Ruegeriaprofundi sp. nov. (type strain ZGT108T=JCM 19518T=ACCC 19861T) and Ruegeriamarisrubri sp. nov. (type strain ZGT118T=JCM 19519T=ACCC 19862T).


Assuntos
Filogenia , Rhodobacteraceae/classificação , Sais , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Oceano Índico , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Arábia Saudita , Análise de Sequência de DNA , Ubiquinona/química
7.
Int J Syst Evol Microbiol ; 67(1): 9-16, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27902200

RESUMO

We isolated a Gram-stain-negative, pink-pigmented, motile, pleomorphic, extremely halophilic archaeon from the brine-seawater interface of Discovery Deep in the Saudi Arabian Red Sea. This strain, designated SB9T, was capable of growth within a wide range of temperatures and salinity, but required MgCl2. Cells lysed in distilled water, but at 7.0 % (w/v) NaCl cell lysis was prevented. The major polar lipids from strain SB9T were phosphatidylglycerol, phosphatidylglycerolphosphate methyl ester, sulfated mannosyl glucosyl diether, mannosyl glucosyl diether, an unidentified glycolipid and two unidentified phospholipids. The major respiratory quinones of strain SB9T were menaquinones MK8 (66 %) and MK8 (VIII-H2) (34 %). Analysis of the 16S rRNA gene sequence revealed that strain SB9T was closely related to species in the genera Halogranum and Haloplanus; in particular, it shared highest sequence similarity with the type strain of Halogranum rubrum (93.4 %), making it its closest known relative. The unfinished draft genome of strain SB9Twas 3 931 127 bp in size with a total G+C content of 62.53 mol% and contained 3917 ORFs, 50 tRNAs and eight rRNAs. Based on comparisons with currently available genomes, the highest average nucleotide identity value was 83 % to Halogranum salarium B-1T (GenBank accession no. GCA_000283335.1). These data indicate that this new isolate cannot be classified into any recognized genera of the family Haloferacaceae, and therefore strain SB9T is considered to be a representative of a novel species of a new genus within this family, for which the name Haloprofundus marisrubri gen. nov., sp. nov. is proposed. The type strain of Haloprofundus marisrubri is SB9T (=JCM 19565T=CGMCC 1.14959T).


Assuntos
Halobacteriaceae/classificação , Filogenia , Salinidade , Água do Mar/microbiologia , Composição de Bases , DNA Arqueal/genética , Glicolipídeos/análise , Halobacteriaceae/genética , Halobacteriaceae/isolamento & purificação , Oceano Índico , Cloreto de Magnésio/metabolismo , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Sais/química , Arábia Saudita , Análise de Sequência de DNA
8.
Genome Announc ; 4(6)2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27932661

RESUMO

The anaerobic ammonium-oxidizing (anammox) bacterium "Candidatus Brocadia sp. 40" demonstrated the fastest growth rate compared to others in this taxon. Here, we report the 2.93-Mb draft genome sequence of this bacterium, which has 2,565 gene-coding regions, 41 tRNAs, and a single rrn operon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA