Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 692: 115574, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38782251

RESUMO

Ascorbic acid (AA), a prominent antioxidant commonly found in human blood serum, serves as a biomarker for assessing oxidative stress levels. Therefore, precise detection of AA is crucial for swiftly diagnosing conditions arising from abnormal AA levels. Consequently, the primary aim of this research is to develop a sensitive and selective electrochemical sensor for accurate AA determination. To accomplish this aim, we used a novel nanocomposite comprised of CeO2-doped ZnO adorned on biomass-derived carbon (CeO2·ZnO@BC) as the active nanomaterial, effectively fabricating a glassy carbon electrode (GCE). Various analytical techniques were employed to scrutinize the structure and morphology features of the CeO2·ZnO@BC nanocomposite, ensuring its suitability as the sensing nanomaterial. This innovative sensor is capable of quantifying a wide range of AA concentrations, spanning from 0.5 to 1925 µM in a neutral phosphate buffer solution. It exhibits a remarkable sensitivity of 0.2267 µA µM-1cm-2 and a practical detection limit of 0.022 µM. Thanks to its exceptional sensitivity and selectivity, this sensor enables highly accurate determination of AA concentrations in real samples. Moreover, its superior reproducibility, repeatability, and stability underscore its reliability and robustness for AA quantification.


Assuntos
Ácido Ascórbico , Carbono , Cério , Técnicas Eletroquímicas , Nanocompostos , Óxido de Zinco , Ácido Ascórbico/análise , Ácido Ascórbico/química , Ácido Ascórbico/sangue , Nanocompostos/química , Óxido de Zinco/química , Técnicas Eletroquímicas/métodos , Cério/química , Carbono/química , Humanos , Biomassa , Eletrodos , Limite de Detecção
2.
Environ Pollut ; 344: 123370, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244902

RESUMO

Wastewater treatment plants (WWTPs) usually contain microplastics (MPs) due to daily influents of domestic and municipal wastewater. Thus, the WWTPs act as a point source of MPs distribution in the environment due to their incapability to remove MPs completely. In this study, MPs occurrence and distribution in anaerobic sludge from WWTPs in different regions (Kaifeng "KHP", Jinan "JSP", and Lanzhou "LGP") were studied. Followed by MPs identification by microscopy and Fourier transform infrared (FTIR) spectrum. The microbial communities associated with anaerobic sludge and MPs were also explored. The results showed that MPs concentrations were 16.5, 38.5, and 17.2 particles/g of total solids (TS) and transparent MPs accounted for 49.1%, 58.5%, and 48.3% in KHP, JSP, and LGP samples, respectively. Fibers represented the most common shape of MPs in KHP (49.1%), JSP (56.0%), and LGP (69.0%). The FTIR spectroscopy indicated the predominance of polyethylene polymer in 1-5 mm MPs. The Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Planctomycetes were the abundant phyla in all anaerobic sludge. The bacterial genera in KHP and LGP were similar, in which Caldilinea (>23%), Terrimonas (>10%), and Ferruginibacter (>7%) formed the core bacterial genera. While Rhodococcus (15.3%) and Rhodoplanes (10.9%) were dominating in JSP. The archaeal genera Methanosaeta (>69%) and Methanobrevibacter (>10%) were abundant in KHP and LGP sludge. While Methanomethylovorans accounted for 90% of JSP. Acetyltransferase and hydratase were the major bacterial enzymes, while reductase was the key archaeal enzyme in all anaerobic sludge. This study provided the baseline for MPs distribution, characterization, and MPs associated microbes in WWTPs.


Assuntos
Chloroflexi , Microbiota , Esgotos , Anaerobiose , Microplásticos , Plásticos , Archaea , Bacteroidetes
3.
World J Microbiol Biotechnol ; 40(1): 12, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953333

RESUMO

The presence of harmful heavy metals (HMs) in the aquatic environment can damage the environment and threaten human health. Traditional remediation techniques can have secondary impacts. Thus, more sustainable approaches must be developed. Microalgae have biological properties (such as high photosynthetic efficiency and growth), which are of great advantage in the HMs removal. In this study, the effect of various concentrations (2×, 4×, and 6×) of copper (Cu), cobalt (Co), and zinc (Zn) on microalgae (C. sorokiniana GEEL-01, P. kessleri GEEL-02, D. asymmetricus GEEL-05) was investigated. The microalgal growth kinetics, HMs removal, total nitrogen (TN), total phosphor (TP), and fatty acids (FAs) compositions were analyzed. The highest growth of 1.474 OD680nm and 1.348 OD680nm was obtained at 2× and 4×, respectively, for P. kessleri GEEL-02. P. kessleri GEEL-02 showed high removal efficiency of Cu, Co, and Zn (38.92-55.44%), (36.27-68.38%), and (32.94-51.71%), respectively. Fatty acids (FAs) analysis showed that saturated FAs in C. sorokiniana GEEL-01 and P. kessleri GEEL-02 increased at 2× and 4× concentrations while decreasing at 6×. For P. kessleri GEEL-02, the properties of biodiesel including the degree of unsaturation (UD) and cetane value (CN) increased at 2×, 4×, and 6× as compared to the control. Thus, this study demonstrated that the three microalgae (particularly P. kessleri GEEL-02) are more suitable for nutrient and HMs removal coupled with biomass/biodiesel production.


Assuntos
Metais Pesados , Microalgas , Humanos , Ácidos Graxos/análise , Biomassa , Biocombustíveis , Nutrientes/análise , Suplementos Nutricionais/análise
4.
Bioact Mater ; 30: 129-141, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37554541

RESUMO

In clinical applications, there is a lack of wound dressings that combine efficient resistance to drug-resistant bacteria with good self-healing properties. In this study, a series of adhesive self-healing conductive antibacterial hydrogel dressings based on oxidized sodium alginate-grafted dopamine/carboxymethyl chitosan/Fe3+ (OSD/CMC/Fe hydrogel)/polydopamine-encapsulated poly(thiophene-3-acetic acid) (OSD/CMC/Fe/PA hydrogel) were prepared for the repair of infected wound. The Schiff base and Fe3+ coordination bonds of the hydrogel structure are dynamic bonds that can be repaired automatically after the hydrogel network is disrupted. Macroscopically, the hydrogel exhibits self-healing properties, allowing the hydrogel dressing to adapt to complex wound surfaces. The OSD/CMC/Fe/PA hydrogel showed good conductivity and photothermal antibacterial properties under near-infrared (NIR) light irradiation. In addition, the hydrogels exhibit tunable rheological properties, suitable mechanical properties, antioxidant properties, tissue adhesion properties and hemostatic properties. Furthermore, all hydrogel dressings improved wound healing in the infected full-thickness defect skin wound repair test in mice. The wound size repaired by OSD/CMC/Fe/PA3 hydrogel + NIR was much smaller (12%) than the control group treated with Tegaderm™ film after 14 days. In conclusion, the hydrogels have high antibacterial efficiency, suitable conductivity, great self-healing properties, good biocompatibility, hemostasis and antioxidant properties, making them promising candidates for wound healing dressings for the treatment of infected skin wounds.

5.
Biosensors (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37366953

RESUMO

The ultimate objective of this research work is to design a sensitive and selective electrochemical sensor for the efficient detection of ascorbic acid (AA), a vital antioxidant found in blood serum that may serve as a biomarker for oxidative stress. To achieve this, we utilized a novel Yb2O3.CuO@rGO nanocomposite (NC) as the active material to modify the glassy carbon working electrode (GCE). The structural properties and morphological characteristics of the Yb2O3.CuO@rGO NC were investigated using various techniques to ensure their suitability for the sensor. The resulting sensor electrode was able to detect a broad range of AA concentrations (0.5-1571 µM) in neutral phosphate buffer solution, with a high sensitivity of 0.4341 µAµM-1cm-2 and a reasonable detection limit of 0.062 µM. The sensor's great sensitivity and selectivity allowed it to accurately determine the levels of AA in human blood serum and commercial vitamin C tablets. It demonstrated high levels of reproducibility, repeatability, and stability, making it a reliable and robust sensor for the measurement of AA at low overpotential. Overall, the Yb2O3.CuO@rGO/GCE sensor showed great potential in detecting AA from real samples.


Assuntos
Grafite , Nanocompostos , Humanos , Grafite/química , Ácido Ascórbico , Reprodutibilidade dos Testes , Nanocompostos/química , Carbono/química , Eletrodos , Técnicas Eletroquímicas/métodos
6.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049240

RESUMO

Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications.

7.
Environ Sci Pollut Res Int ; 30(22): 61710-61725, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933133

RESUMO

Appropriate material selection and proper understanding of bandgap modification are key factors for the development of efficient photocatalysts. Herein, we developed an efficient, well-organized visible light oriented photocatalyst based on g-C3N4 in association with polymeric network of chitosan (CTSN) and platinum (Pt) nanoparticles utilizing a straightforward chemical approach. Modern techniques like XRD, XPS, TEM, FESEM, UV-Vis, and FTIR spectroscopy were exploited for characterization of synthesized materials. XRD results confirmed the involvement of α-polymorphic form of CTSN in graphitic carbon nitride. XPS investigation confirmed the establishment of trio photocatalytic structure among Pt, CTSN, and g-C3N4. TEM examination showed that the synthesized g-C3N4 possesses fine fluffy sheets like structure (100 to 500 nm in size) intermingled with a dense layered framework of CTSN with good dispersion of Pt nanoparticles on g-C3N4 and CTSN composite structure. The bandgap energies for g-C3N4, CTSN/g-C3N4, and Pt@ CTSN/g-C3N4 photocatalysts were found to be 2.94, 2.73, and 2.72 eV, respectively. The photodegradation skills of each created structure have been examined on antibiotic gemifloxacin mesylate and methylene blue (MB) dye. The newly developed Pt@CTSN/g-C3N4 ternary photocatalyst was found to be efficacious for the elimination of gemifloxacin mesylate (93.3%) in 25 min and MB (95.2%) just in 18 min under visible light. Designed Pt@CTSN/g-C3N4 ternary photocatalytic framework exhibited ⁓ 2.20 times more effective than bare g-C3N4 for the destruction of antibiotic drug. This study provides a simple route towards the designing of rapid, effective visible light oriented photocatalyts for the existing environmental issues.


Assuntos
Quitosana , Nanopartículas , Antibacterianos/química , Gemifloxacina , Azul de Metileno/química , Platina , Catálise , Luz
8.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987132

RESUMO

In this present work, a PVA/PVP-blend polymer was doped with various concentrations of neodymium oxide (PB-Nd+3) composite films using the solution casting technique. X-ray diffraction (XRD) analysis was used to investigate the composite structure and proved the semi-crystallinity of the pure PVA/PVP polymeric sample. Furthermore, Fourier transform infrared (FT-IR) analysis, a chemical-structure tool, illustrated a significant interaction of PB-Nd+3 elements in the polymeric blends. The transmittance data reached 88% for the host PVA/PVP blend matrix, while the absorption increased with the high dopant quantities of PB-Nd+3. The absorption spectrum fitting (ASF) and Tauc's models optically estimated the direct and indirect energy bandgaps, where the addition of PB-Nd+3 concentrations resulted in a drop in the energy bandgap values. A remarkably higher quantity of Urbach energy for the investigated composite films was observed with the increase in the PB-Nd+3 contents. Moreover, seven theoretical equations were utilized, in this current research, to indicate the correlation between the refractive index and the energy bandgap. The indirect bandgaps for the proposed composites were evaluated to be in the range of 5.6 eV to 4.82 eV; in addition, the direct energy gaps decreased from 6.09 eV to 5.83 eV as the dopant ratios increased. The nonlinear optical parameters were influenced by adding PB-Nd+3, which tended to increase the values. The PB-Nd+3 composite films enhanced the optical limiting effects and offered a cut-off laser in the visible region. The real and imaginary parts of the dielectric permittivity of the blend polymer embedded in PB-Nd+3 increased in the low-frequency region. The AC conductivity and nonlinear I-V characteristics were augmented with the doping level of PB-Nd+3 contents in the blended PVA/PVP polymer. The outstanding findings regarding the structural, electrical, optical, and dielectric performance of the proposed materials show that the new PB-Nd+3-doped PVA/PVP composite polymeric films are applicable in optoelectronics, cut-off lasers, and electrical devices.

9.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987136

RESUMO

Nowadays, synthetic polymers are used in medical applications due to their special biodegradable, biocompatible, hydrophilic, and non-toxic properties. The materials, which can be used for wound dressing fabrication with controlled drug release profile, are the need of the time. The main aim of this study was to develop and characterize polyvinyl alcohol/polycaprolactone (PVA/PCL) fibres containing a model drug. A dope solution comprising PVA/PCL with the drug was extruded into a coagulation bath and became solidified. The developed PVA/PCL fibres were then rinsed and dried. These fibres were tested for Fourier transform infrared spectroscopy, linear density, topographic analysis, tensile properties, liquid absorption, swelling behaviour, degradation, antimicrobial activity, and drug release profile for improved and better healing of the wound. From the results, it was concluded that PVA/PCL fibres containing a model drug can be produced by using the wet spinning technique and have respectable tensile properties; adequate liquid absorption, swelling %, and degradation %; and good antimicrobial activity with the controlled drug release profile of the model drug for wound dressing applications.

10.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36831944

RESUMO

Exposure to hydroquinone (HQ) can cause various health hazards and negative impacts on the environment. Therefore, we developed an efficient electrochemical sensor to detect and quantify HQ based on palladium nanoparticles deposited in a porous silicon-polypyrrole-carbon black nanocomposite (Pd@PSi-PPy-C)-fabricated glassy carbon electrode. The structural and morphological characteristics of the newly fabricated Pd@PSi-PPy-C nanocomposite were investigated utilizing FESEM, TEM, EDS, XPS, XRD, and FTIR spectroscopy. The exceptionally higher sensitivity of 3.0156 µAµM-1 cm-2 and a low limit of detection (LOD) of 0.074 µM were achieved for this innovative electrochemical HQ sensor. Applying this novel modified electrode, we could detect wide-ranging HQ (1-450 µM) in neutral pH media. This newly fabricated HQ sensor showed satisfactory outcomes during the real sample investigations. During the analytical investigation, the Pd@PSi-PPy-C/GCE sensor demonstrated excellent reproducibility, repeatability, and stability. Hence, this work can be an effective method in developing a sensitive electrochemical sensor to detect harmful phenol derivatives for the green environment.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Hidroquinonas/análise , Hidroquinonas/química , Polímeros/química , Nanopartículas Metálicas/química , Silício , Paládio/química , Pirróis/química , Fuligem , Porosidade , Reprodutibilidade dos Testes , Carbono/química , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos
11.
Membranes (Basel) ; 13(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36837659

RESUMO

Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24° water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/s). AI-incorporated nanofiber membrane can effectively be used for facial mask application.

12.
Chemosphere ; 321: 138006, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731668

RESUMO

Commercially available QPPO/PVA based anion exchange membrane (AEM) BIII was to inquire the percentage discharge of anionic dye Eosin-B (EB) at terrain temperature from wastewater. The impact of EB initial concentration, membrane dosage, ionic strength, contact time and temperature on EB percentage removal was contemplated. The EB percentage removal was increased from 22 to 99.56% and 38.15-99.56% with contact time and membrane dosage respectively while decreased from 99.56 to 29%, 99.56 to 54.61% and 99.56 to 92.22% with enhancing initial concentration of EB, ionic strength and temperature respectively. Nonlinear isotherm models were utilized to demonstrate EB adsorption onto AEM BIII. Attained results exhibited that nonliner Freundlich isotherm model best fitted to EB adsorption onto AEM BIII. For EB adsorption onto AEM BIII, adsorption kinetics were inquired in detail by using several kinetic models but EB adsorption nicely fitted to pseudo-second-order kinetics. Similarly thermodynamic analysis was performed and results pointed to an exothermic adsorption of EB onto AEM BIII. The membrane could be reused for four concecutive cycles with loosing its efficiency.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Corantes , Amarelo de Eosina-(YS) , Concentração de Íons de Hidrogênio , Termodinâmica , Adsorção , Cinética , Ânions
13.
Chemosphere ; 314: 137604, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574789

RESUMO

Depletion of non-renewable fuel has obliged researchers to seek out sustainable and environmentally friendly alternatives. Membranes have proven to be an effective technique in biofuel production for reaction, purification, and separation, with the ability to use both porous and non-porous membranes. It is demonstrated that a membrane-based sustainable and green production can result in a high degree of process intensification, whereas the recovery and repurposing of catalysts and alcohol are anticipated to increase the process economics. Therefore, in this study sustainable biodiesel was synthesized from inedible seed oil (37 wt%) of Cordia myxa using a membrane reactor. Transesterification was catalyzed by heterogenous nano-catalyst of indium oxide prepared with leaf extract of Boerhavia diffusa. Highest biodiesel yield of 95 wt% was achieved at methanol to oil molar ratio of 7:1, catalyst load 0.8 wt%, temperature 82.5 °C and time 180 min In2O3 nanoparticles exhibited reusability up to five successive transesterification rounds. The production of methyl esters was confirmed using Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. The predominant fatty acid methyl ester detected in the biodiesel was 5, 8-octadecenoic acid. Biodiesel fuel qualities were determined to be comparable to worldwide ASTM D-6571 and EN-14214 standards. Finally, it was concluded that membrane technology can result in a highly intensified reaction process while efficient recovery of both nano catalysts and methanol increases the economics of transesterification and lead to sustainable production.


Assuntos
Cordia , Nanopartículas , Óleos de Plantas/química , Metanol , Biocombustíveis , Biomassa , Esterificação , Catálise , Etanol , Ácidos Graxos/química
14.
Langmuir ; 38(51): 16203-16213, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36516225

RESUMO

Developing high-performance, safer, and affordable flexible batteries is of urgent need to power the fast-growing flexible electronics market. In this respect, zinc-ion chemistry employing aqueous-based electrolytes represents a promising combination considering the safety, cost efficiency, and both high energy and high-power output. Herein, we represent a high-performance flexible in-plane aqueous zinc-ion miniaturized battery constructed with all electrodeposited electrodes, i.e., MnO2 cathode and zinc anode with polyimide-derived interdigital patterned laser-scribed carbon (LSC) as the current collector as well as the template for electrodeposition. The LSC possesses a cross-linked network of graphitic carbon sheet, which offers large surface area over low footprint and ensures active materials loading with a robust conductive network. The LSC with high zincophilic characteristic also offers dendrite-free zinc deposition with very low Zn2+ plating stripping overpotential. Benefitting from the Zn//MnO2-rich redox chemistry, the ability of the 3D LSC network to uniformly distribute reaction sites, and the architectural merits of in-plane interdigitated electrode configuration, we report very high capacity values of ∼549 mAh/g (or ∼523 µAh/cm2) and 148 mAh/g (or 140 µAh/cm2) at 0.1 A/g (0.095 mA/cm2) and 2 A/g (1.9 mA/cm2) currents, respectively. The device was also able to maintain a high capacity of 196 mAh/g (areal capacity of 76.19 µAh/cm2) at 1 A/g (0.95 mA/cm2) current after 1350 cycles. The flexibility of the device was demonstrated in polyacryl amide (PAM) gel polymer soaked with a 2 M ZnSO4 and 0.2 M MnSO4 electrolyte, which exhibited a comparable specific capacity of ∼102-110 mAh/g in flat condition and different bending (100° or 160° bending) conditions. The device does not use any conventional current collector, separator, and conductive or polymer additives. The overall process is highly scalable and can be completed in less than a couple of hours.

15.
Membranes (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36557137

RESUMO

Sweat is a natural body excretion produced by skin glands, and the body cools itself by releasing salty sweat. Wetness in the underarms and feet for long durations causes itchiness and an unpleasant smell. Skin-friendly reusable sweat pads could be used to absorb sweat. Transportation of moisture and functionality is the current challenge that many researchers are working on. This study aims to develop a functional and breathable sweat pad with antimicrobial and quick drying performance. Three layered functional sweat pads (FSP) are prepared in which the inner layer is made of an optimized needle-punched coolmax/polypropylene nonwoven blend. This layer is then dipped in antimicrobial ZnO solution (2, 4, and 6 wt.%), and super absorbent polymer (SAP) is embedded, and this is called a functional nonwoven (FNW1) sheet. Electrospun nanofiber-based nanomembranes of polyamide-6 are optimized for bead-free fibers. They are used as a middle layer to enhance the pad's functionality, and the third layer is again made of needle-punched optimized coolmax/polypropylene nonwoven sheets. A simple nonwoven-based sweat pad (SSP) is also prepared for comparison purposes. Nonwoven sheets are optimized based on better comfort properties, including air/water vapor permeability and moisture management (MMT). Nonwoven webs having a higher proportion of coolmax show better air permeability and moisture transfer from the inner to the outer layer. Antimicrobial activity of the functional nonwoven layer showed 8 mm of bacterial growth, but SSP and FSP showed only 6 mm of growth against Staphylococcus aureus. FSP showed superior comfort and antibacterial properties. This study could be a footstone toward highly functional sweat pads with remarkable comfort properties.

16.
Biosensors (Basel) ; 12(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36354485

RESUMO

Herein, an ultra-sonication technique followed by a photoreduction technique was implemented to prepare silver nanoparticle-decorated Chitosan/SrSnO3 nanocomposites (Ag-decorated Chitosan/SrSnO3 NCs), and they were successively used as electron-sensing substrates coated on a glassy carbon electrode (GCE) for the development of a 2,6-dinitrophenol (2,6-DNP) efficient electrochemical sensor. The synthesized NCs were characterized in terms of morphology, surface composition, and optical properties using FESEM, TEM, HRTEM, BET, XRD, XPS, FTIR, and UV-vis analysis. Ag-decorated Chitosan/SrSnO3 NC/GCE fabricated with the conducting binder (PEDOT:PSS) was found to analyze 2,6-DNP in a wide detection range (LDR) of 1.5~13.5 µM by applying the differential pulse voltammetry (DPV) approach. The 2,6-DNP sensor parameters, such as sensitivity (54.032 µA µM-1 cm-2), limit of detection (LOD; 0.18 ± 0.01 µM), limit of quantification (LOQ; 0.545 µM) reproducibility, and response time, were found excellent and good results. Additionally, various environmental samples were analyzed and obtained reliable analytical results. Thus, it is the simplest way to develop a sensor probe with newly developed nanocomposite materials for analyzing the carcinogenic contaminants from the environmental effluents by electrochemical approach for the safety of environmental and healthcare fields in a broad scale.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanocompostos , Prata/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Nanocompostos/química , Eletrodos , Carbono/química , Dinitrofenóis
17.
Biosensors (Basel) ; 12(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36354499

RESUMO

In this study, a selective 4-nitrophenol (4-NP) sensor was developed onto a glassy carbon electrode (GCE) as an electron-sensing substrate, which decorated with sol-gel, prepared Pt nanoparticles- (NPs) embedded polypyrole-carbon black (PPy-CB)/ZnO nanocomposites (NCs) using differential pulse voltammetry. Characterizations of the NCs were performed using Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Ultraviolet-visible Spectroscopy (UV-vis), Fourier Transform Infrared Spectroscopy (FTIR), High Resolution Transmission Electron Microscopy (HRTEM), and X-ray Diffraction Analysis (XRD). The GCE modified by conducting coating binders [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS] based on Pt NPs/PPy-CB/ZnO NCs functioned as the working electrode and showed selectivity toward 4-NP in a phosphate buffer medium at pH 7.0. Our analysis of 4-NP showed the linearity from 1.5 to 40.5 µM, which was identified as the linear detection range (LDR). A current versus concentration plot was formed and showed a regression co-efficient R2 of 0.9917, which can be expressed by ip(µA) = 0.2493C(µM) + 15.694. The 4-NP sensor sensitivity was calculated using the slope of the LDR, considering the surface area of the GCE (0.0316 cm2). The sensitivity was calculated as 7.8892 µAµM-1cm-2. The LOD (limit of detection) of the 4-NP was calculated as 1.25 ± 0.06 µM, which was calculated from 3xSD/σ (SD: Standard deviation of blank response; σ: Slope of the calibration curve). Limit of quantification (LOQ) is also calculated as 3.79 µM from LOQ = 10xLOD/3.3. Sensor parameters such as reproducibility, response time, and analyzing stability were outstanding. Therefore, this novel approach can be broadly used to safely fabricate selective 4-NP sensors based on nanoparticle-decorated nanocomposite materials in environmental measurement.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Fuligem , Reprodutibilidade dos Testes , Limite de Detecção , Eletrodos , Nanopartículas/química , Carbono/química
18.
Membranes (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422140

RESUMO

Synthetic antibiotics have captured the market in recent years, but the side effects of these products are life-threatening. In recent times, researchers have focused their research on natural-based products such as natural herbal oils, which are eco-friendly, biocompatible, biodegradable, and antibacterial. In this study, polyethylene oxide (PEO) and aqueous ginger extract (GE) were electrospun to produce novel antibacterial nanomembrane sheets as a function of PEO and GE concentrations. A GE average particle size of 91.16 nm was achieved with an extensive filtration process, inferring their incorporation in the PEO nanofibres. The presence of the GE was confirmed by Fourier transform infrared spectroscopy (FTIR) through peaks of phenol and aromatic groups. The viscoelastic properties of PEO/GE solutions were analysed in terms of PEO and GE concentrations. Increasing PEO and GE concentrations increased the solution's viscosity. The dynamic viscosity of 3% was not changed with increasing shear rate, indicating Newtonian fluid behaviour. The dynamic viscosity of 4 and 5 wt% PEO/GE solutions containing 10% GE increased exponentially compared to 3 wt%. In addition, the shear thinning behaviour was observed over a frequency range of 0.05 to 100 rad/s. Scanning Electron Microscopy (SEM) analysis also specified an increase in the nanofibre's diameter with increasing PEO concentration, while SEM images displayed smooth morphology with beadless nanofibres at different PEO/GE concentrations. In addition, PEO/GE nanomembranes inhibited the growth of Staphylococcus aureus, as presented by qualitative antibacterial results. The extent of PEO/GE nanomembrane's antibacterial activity was further investigated by the agar dilution method, which inhibited the 98.79% Staphylococcus aureus population at 30% GE concentration.

19.
Membranes (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422150

RESUMO

Textile-supported nanocomposite as a scaffold has been extensively used in the medical field, mainly to give support to weak or harmed tissues. However, there are some challenges in fabricating the nanofiber/textile composite, i.e., suitable porous structure with defined pore size, less skin contact area, biocompatibility, and availability of degradable materials. Herein, polyamide-6 (PA) nanofibers were synthesized using needleless electrospinning with the toothed wheel as a spinneret. The electrospinning process was optimized using different process and solution parameters. In the next phase, optimized PA nanofiber membranes of optimum fiber diameter with uniform distribution and thickness were used in making nanofiber membrane-textile composite. Different textile fabrics (woven, non-woven, knitted) were developed. The optimized nanofiber membranes were combined with non-woven, woven, and knitted fabrics to make fabric-supported nanocomposite. The nanofiber/fabric composites were compared with available market woven and knitted meshes for mechanical properties, morphology, structure, and chemical interaction analysis. It was found that the tear strength of the nanofiber/woven composite was three times higher than market woven mesh, and the nanofiber/knitted composite was 2.5 times higher than market knitted mesh. The developed composite structures with woven and knitted fabric exhibited improved bursting strength (613.1 and 751.1 Kpa), tensile strength (195.76 and 227.85 N), and puncture resistance (68.76 and 57.47 N), respectively, than market available meshes. All these properties showed that PA nanofibers/textile structures could be utilized as a composite with multifunctional properties.

20.
Chemosphere ; 309(Pt 1): 136535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150484

RESUMO

The biogas production (BP), volatile fatty acids (VFAs), microbial communities, and microbes' active enzymes were studied upon the addition of biochar (0-1.5%) at 6% and 8% slaughterhouse waste (SHW) loadings. The 0.5% biochar enhanced BP by 1.5- and 1.6-folds in 6% and 8% SHW-loaded reactors, respectively. Increasing the biochar up to 1.5% caused a reduction in BP at 6% SHW. However, the BP from 8% of SHW was enhanced by 1.4-folds at 1.5% biochar. The VFAs production in all 0.5% biochar amended reactors was highly significant compared to control (p-value < 0.05). The biochar addition increased the bacterial and archaeal diversity at both 6% and 8% SHW loadings. The highest number of OTUs at 0.5% biochar were 567 and 525 in 6% and 8% SHW, respectively. Biochar prompted the Clostridium abundance and increased the lyases and transaminases involved in the degradation of lipids and protein, respectively. Biochar addition improved the Methanosaeta and Methanosphaera abundance in which the major enzymes were reductase and hydrogenase. The archaeal enzymes showed mixed acetoclastic and hydrogenotrophic methanogenesis.


Assuntos
Hidrogenase , Liases , Microbiota , Archaea/metabolismo , Biocombustíveis , Anaerobiose , Reatores Biológicos , Matadouros , Metano/metabolismo , Hidrogenase/metabolismo , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Liases/metabolismo , Transaminases , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA