Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Cancer ; 7(11): 982-994, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481764

RESUMO

MYC oncoprotein promotes cell proliferation and serves as the key driver in many human cancers; therefore, considerable effort has been expended to develop reliable pharmacological methods to suppress its expression or function. Despite impressive progress, MYC-targeting drugs have not reached the clinic. Recent advances suggest that within a limited expression range unique to each tumor, MYC oncoprotein can have a paradoxical, proapoptotic function. Here we introduce a counterintuitive idea that modestly and transiently elevating MYC levels could aid chemotherapy-induced apoptosis and thus benefit the patients as much, if not more than MYC inhibition.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-myc , Apoptose/genética , Proliferação de Células/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
3.
Leukemia ; 33(10): 2429-2441, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30914792

RESUMO

Therapeutic targeting of initiating oncogenes is the mainstay of precision medicine. Considerable efforts have been expended toward silencing MYC, which drives many human cancers including Burkitt lymphomas (BL). Yet, the effects of MYC silencing on standard-of-care therapies are poorly understood. Here we found that inhibition of MYC transcription renders B-lymphoblastoid cells refractory to chemotherapeutic agents. This suggested that in the context of chemotherapy, stabilization of Myc protein could be more beneficial than its inactivation. We tested this hypothesis by pharmacologically inhibiting glycogen synthase kinase 3ß (GSK-3ß), which normally targets Myc for proteasomal degradation. We discovered that chemorefractory BL cell lines responded better to doxorubicin and other anti-cancer drugs when Myc was transiently stabilized. In vivo, GSK3 inhibitors (GSK3i) enhanced doxorubicin-induced apoptosis in BL patient-derived xenografts (BL-PDX), as well as in murine MYC-driven lymphoma allografts. This enhancement was accompanied by and required deregulation of several key genes acting in the extrinsic, death-receptor-mediated apoptotic pathway. Consistent with this mechanism of action, GSK3i also facilitated lymphoma cell killing by a death ligand TRAIL and by a death receptor agonist mapatumumab. Thus, GSK3i synergizes with both standard chemotherapeutics and direct engagers of death receptors and could improve outcomes in patients with refractory lymphomas.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfoma de Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Linfoma de Células B/metabolismo , Masculino , Camundongos , Transdução de Sinais
4.
Cancer Discov ; 5(12): 1282-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26516065

RESUMO

UNLABELLED: The CD19 antigen, expressed on most B-cell acute lymphoblastic leukemias (B-ALL), can be targeted with chimeric antigen receptor-armed T cells (CART-19), but relapses with epitope loss occur in 10% to 20% of pediatric responders. We detected hemizygous deletions spanning the CD19 locus and de novo frameshift and missense mutations in exon 2 of CD19 in some relapse samples. However, we also discovered alternatively spliced CD19 mRNA species, including one lacking exon 2. Pull-down/siRNA experiments identified SRSF3 as a splicing factor involved in exon 2 retention, and its levels were lower in relapsed B-ALL. Using genome editing, we demonstrated that exon 2 skipping bypasses exon 2 mutations in B-ALL cells and allows expression of the N-terminally truncated CD19 variant, which fails to trigger killing by CART-19 but partly rescues defects associated with CD19 loss. Thus, this mechanism of resistance is based on a combination of deleterious mutations and ensuing selection for alternatively spliced RNA isoforms. SIGNIFICANCE: CART-19 yield 70% response rates in patients with B-ALL, but also produce escape variants. We discovered that the underlying mechanism is the selection for preexisting alternatively spliced CD19 isoforms with the compromised CART-19 epitope. This mechanism suggests a possibility of targeting alternative CD19 ectodomains, which could improve survival of patients with B-cell neoplasms.


Assuntos
Processamento Alternativo , Antígenos CD19/genética , Imunoterapia , Mutação , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Membrana Celular/metabolismo , Epitopos/imunologia , Éxons , Humanos , Imunoterapia/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Ligação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Recidiva , Análise de Sequência de DNA , Fatores de Processamento de Serina-Arginina , Transcrição Gênica
5.
Arch Pathol Lab Med ; 137(9): 1296-303, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23991743

RESUMO

CONTEXT: DNA sequencing is critical to identifying many human genetic disorders caused by DNA mutations, including cancer. Pyrosequencing is less complex, involves fewer steps, and has a superior limit of detection compared with Sanger sequencing. The fundamental basis of pyrosequencing is that pyrophosphate is released when a deoxyribonucleotide triphosphate is added to the end of a nascent strand of DNA. Because deoxyribonucleotide triphosphates are sequentially added to the reaction and because the pyrophosphate concentration is continuously monitored, the DNA sequence can be determined. OBJECTIVE: To demonstrate the fundamental principles of pyrosequencing. DATA SOURCES: Salient features of pyrosequencing are demonstrated using the free software program Pyromaker ( http://pyromaker.pathology.jhmi.edu ), through which users can input DNA sequences and other pyrosequencing parameters to generate the expected pyrosequencing results. CONCLUSIONS: We demonstrate how mutant and wild-type DNA sequences result in different pyrograms. Using pyrograms of established mutations in tumors, we explain how to analyze the pyrogram peaks generated by different dispensation sequences. Further, we demonstrate some limitations of pyrosequencing, including how some complex mutations can be indistinguishable from single base mutations. Pyrosequencing is the basis of the Roche 454 next-generation sequencer and many of the same principles also apply to the Ion Torrent hydrogen ion-based next-generation sequencers.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Software , Sequência de Bases , Análise Mutacional de DNA , DNA de Neoplasias/química , DNA de Neoplasias/genética , Difosfatos/química , Genótipo , Humanos , Mutação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA