RESUMO
Major depressive disorder (MDD) is a leading contributor to the global burden of disease. However, the causal relationship of risk factors, such as genetic predisposition or experience of augmented stress, remain unknown. Numerous studies in humans and rodents have implicated brain-derived neurotrophic factor (BDNF) in MDD pathology, as a genetic risk factor and a factor regulated by stress. Until now, the majority of preclinical studies have employed genetically modified mice as their model of choice. However, mice display a limited behavioural repertoire and lack expression of circulating BDNF, which is present in rats and humans. Therefore, heterozygous BDNF (BDNF+/- ) rats were tested for affective behaviours and accompanying expression of key genes associated with affective disorders in the brain. We found that BDNF+/- rats, which have reduced BDNF levels in brain and plasma, displayed symptoms of anhedonia, a core symptom of MDD, and anxiety-like behaviour, but no behavioural despair or cognitive impairments. This was accompanied by changes in the expression of genes that are implicated in modulation of the stress response and affective disorders. Hence, glucocorticoid receptor, neuregulin 1 and disrupted-in-schizophrenia 1 gene expression were upregulated in the prefrontal cortex of BDFN+/- rats, whereas FK506 binding protein 5 levels were decreased in the hippocampus. We conclude that a reduction in BDNF levels alters expression of genes associated with affective disorders, which may contribute to the development of depressive-like symptoms.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Fenótipo , Animais , Transtorno Depressivo Maior/metabolismo , Feminino , Heterozigoto , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismoRESUMO
Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11ß-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28â¯days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11ß-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11ß-HSD1. This finding supports selective 11ß-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Afeto/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Corticosterona/metabolismo , Medo/fisiologia , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Memória Espacial/fisiologiaRESUMO
Evidence from human studies suggests that high expression of brain mineralocorticoid receptors (MR) may promote resilience against negative consequences of stress exposure, including childhood trauma. We examined, in mice, whether brain MR overexpression can alleviate the effects of chronic early life stress (ELS) on contextual memory formation under low and high stress conditions, and neurogenesis and synaptic function of dentate gyrus granular cells. Male mice were exposed to ELS by housing the dam with limited nesting and bedding material from postnatal day (PND) 2 to 9. We investigated the moderating role of MRs by using forebrain-specific transgenic MR overexpression (MR-tg) mice. Low-stress contextual (i.e., object relocation) memory formation was hampered by ELS in wildtype but not MR-tg mice. Anxiety like behavior and high-stress contextual (i.e., fear) memory formation were unaffected by ELS and/or MR expression level. At the cellular level, an interaction effect was observed between ELS and MR overexpression on the number of doublecortin-positive cells, with a significant difference between the wildtype ELS and MR-tg ELS groups. No interaction was found regarding Ki-67 and BrdU staining. A significant interaction between ELS and MR expression was further observed with regard to mEPSCs and mIPSC frequency. The ratio of evoked EPSC/IPSC or NMDA/AMPA responses was unaffected. Overall, these results suggest that ELS affects contextual memory formation under low stress conditions as well as neurogenesis and synaptic transmission in dentate granule cells, an effect that can be alleviated by MR-overexpression.
RESUMO
Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity.
Assuntos
Hipocampo/patologia , Hipocampo/fisiopatologia , Memória , Plasticidade Neuronal , Receptores de Mineralocorticoides/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Animais , Comportamento Animal , Condicionamento Clássico , Medo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese , Sistemas Neurossecretores/metabolismoRESUMO
Mineralocorticoid receptors (MRs) have been implicated in behavioral adaptation and learning and memory. Since-at least in humans-MR function seems to be sex-dependent, we examined the behavioral relevance of MR in female mice exhibiting transgenic MR overexpression in the forebrain. Transgenic MR overexpression did not affect contextual fear memory or cued fear learning and memory. Moreover, MR overexpressing and control mice discriminated equally well between fear responses in a combined cue and context fear conditioning paradigm. Also context-memory in an object recognition task was unaffected in MR overexpressing mice. We conclude that MR overexpression in female animals does not affect fear conditioned responses and object recognition memory.
RESUMO
Adverse experiences during childhood are associated with the development of psychiatric disorders later in life. In particular, childhood abuse and neglect are risk factors for addictive disorders, such as substance misuse and pathological gambling. Impulsivity and compulsivity are key features of these disorders. Therefore, we investigated whether childhood adversity might increase vulnerability for addictive disorders through promotion of compulsive and impulsive behaviors. Rats were exposed to a brief, variable childhood or prepubertal stress protocol (Postnatal Days 25-27), and their behavior in a delay discounting task was compared with that of control animals in adulthood. Prepubertal stress produced compulsive-type behavior in females. Specifically, stressed females displayed inappropriate responses during a choice phase of the task, perseverating with nosepoke responding instead of choosing between 2 levers. Stressed females also showed learning impairments during task training. However, prepubertal stress was not associated with the development of impulsive behavior, as rates of delay discounting were not affected in either sex. Childhood adversity may contribute to the establishment and maintenance of addictive disorders by increasing perseveration in females. Perseverative behavior may therefore provide a viable therapeutic target for preventing the development of addictive disorders in individuals exposed to childhood adversity. These effects were not seen in males, highlighting sex differences in response to early life stress.
Assuntos
Comportamento Compulsivo , Comportamento Impulsivo , Caracteres Sexuais , Estresse Psicológico , Envelhecimento/psicologia , Animais , Peso Corporal , Desvalorização pelo Atraso , Modelos Animais de Doenças , Feminino , Aprendizagem , Deficiências da Aprendizagem/etiologia , Masculino , Testes Psicológicos , Distribuição Aleatória , Ratos , Estresse Psicológico/complicaçõesRESUMO
Functional magnetic resonance imaging (fMRI) of learned behaviour in 'awake rodents' provides the opportunity for translational preclinical studies into the influence of pharmacological and genetic manipulations on brain function. fMRI has recently been employed to investigate learned behaviour in awake rats. Here, this methodology is translated to mice, so that future fMRI studies may exploit the vast number of genetically modified mouse lines that are available. One group of mice was conditioned to associate a flashing light (conditioned stimulus, CS) with foot shock (PG; paired group), and another group of mice received foot shock and flashing light explicitly unpaired (UG; unpaired group). The blood oxygen level-dependent signal (proxy for neuronal activation) in response to the CS was measured 24 h later in awake mice from the PG and UG using fMRI. The amygdala, implicated in fear processing, was activated to a greater degree in the PG than in the UG in response to the CS. Additionally, the nucleus accumbens was activated in the UG in response to the CS. Because the CS signalled an absence of foot shock in the UG, it is possible that this region is involved in processing the safety aspect of the CS. To conclude, the first use of fMRI to visualise brain activation in awake mice that are completing a learned emotional task is reported. This work paves the way for future preclinical fMRI studies to investigate genetic and environmental influences on brain function in transgenic mouse models of disease and aging.
Assuntos
Aprendizagem por Associação/fisiologia , Encéfalo/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Eletrochoque , Estudos de Viabilidade , Pé , Masculino , Camundongos Endogâmicos C57BL , Movimento (Física) , Vias Neurais/fisiologia , Oxigênio/sangue , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Percepção Visual/fisiologia , VigíliaRESUMO
Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice.