Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20431, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227726

RESUMO

Nanomechanical oscillators are an alternative platform for computation in harsh environments. However, external perturbations arising from such environments may hinder information processing by introducing errors into the computing system. Here, we simulate the dynamics of three coupled Duffing oscillators whose multiple equilibrium states can be used for information processing and storage. Our analysis reveals that, within experimentally relevant parameters, error correcting dynamics can emerge, wherein the system's state is robust against random external impulses. We find that oscillators in this configuration have several surprising and attractive features, including dynamic isolation of resonators exposed to extreme impulses and the ability to correct simultaneous errors.

2.
Opt Express ; 31(23): 37663-37672, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017892

RESUMO

Optomechanical magnetometers enable highly sensitive magnetic field sensing. However, all such magnetometers to date have been optically excited and read-out either via free space or a tapered optical fiber. This limits their scalability and integrability, and ultimately their range of applications. Here, we present an optomechanical magnetometer that is excited and read-out via a suspended optical waveguide fabricated on the same silicon chip as the magnetometer. Moreover, we demonstrate that thermomechanical noise limited sensitivity is possible using portable electronics and laser. The magnetometer employs a silica microdisk resonator selectively sputtered with a magnetostrictive film of galfenol (FeGa) which induces a resonant frequency shift in response to an external magnetic field. Experimental results reveal the retention of high quality-factor optical whispering gallery mode resonances whilst also demonstrating high sensitivity and dynamic range in ambient conditions. The use of off-the-shelf portable electronics without compromising sensor performance demonstrates promise for applications.

3.
Sci Adv ; 9(21): eade3591, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224251

RESUMO

When confined within an optical cavity light can exert strong radiation pressure forces. Combined with dynamical backaction, this enables important processes, such as laser cooling, and applications ranging from precision sensors to quantum memories and interfaces. However, the magnitude of radiation pressure forces is constrained by the energy mismatch between photons and phonons. Here, we overcome this barrier using entropic forces arising from the absorption of light. We show that entropic forces can exceed the radiation pressure force by eight orders of magnitude and demonstrate this using a superfluid helium third-sound resonator. We develop a framework to engineer the dynamical backaction from entropic forces, applying it to achieve phonon lasing with a threshold three orders of magnitude lower than previous work. Our results present a pathway to exploit entropic forces in quantum devices and to study nonlinear fluid phenomena such as turbulence and solitons.

4.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451010

RESUMO

Aerospace technologies are crucial for modern civilization; space-based infrastructure underpins weather forecasting, communications, terrestrial navigation and logistics, planetary observations, solar monitoring, and other indispensable capabilities. Extraplanetary exploration-including orbital surveys and (more recently) roving, flying, or submersible unmanned vehicles-is also a key scientific and technological frontier, believed by many to be paramount to the long-term survival and prosperity of humanity. All of these aerospace applications require reliable control of the craft and the ability to record high-precision measurements of physical quantities. Magnetometers deliver on both of these aspects and have been vital to the success of numerous missions. In this review paper, we provide an introduction to the relevant instruments and their applications. We consider past and present magnetometers, their proven aerospace applications, and emerging uses. We then look to the future, reviewing recent progress in magnetometer technology. We particularly focus on magnetometers that use optical readout, including atomic magnetometers, magnetometers based on quantum defects in diamond, and optomechanical magnetometers. These optical magnetometers offer a combination of field sensitivity, size, weight, and power consumption that allows them to reach performance regimes that are inaccessible with existing techniques. This promises to enable new applications in areas ranging from unmanned vehicles to navigation and exploration.

5.
Opt Express ; 28(15): 22450-22461, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752505

RESUMO

Brillouin systems operating in the quantum regime have recently been identified as a valuable tool for quantum information technologies and fundamental science. However, reaching the quantum regime is extraordinarily challenging, owing to the stringent requirements of combining low thermal occupation with low optical and mechanical dissipation, and large coherent phonon-photon interactions. Here, we propose an on-chip liquid based Brillouin system that is predicted to exhibit large phonon-photon coupling with exceptionally low acoustic dissipation. The system is comprised of a silicon-based "slot" waveguide filled with superfluid helium. This type of waveguide supports optical and acoustical traveling waves, strongly confining both fields into a subwavelength-scale mode volume. It serves as the foundation of an on-chip traveling wave Brillouin resonator with an electrostrictive single photon optomechanical coupling rate exceeding 240 kHz. Such devices may enable applications ranging from ultra-sensitive superfluid-based gyroscopes, to non-reciprocal optical circuits. Furthermore, this platform opens up new possibilities to explore quantum fluid dynamics in a strongly interacting condensate.

6.
Science ; 366(6472): 1480-1485, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857478

RESUMO

Quantized vortices are fundamental to the two-dimensional dynamics of superfluids, from quantum turbulence to phase transitions. However, surface effects have prevented direct observations of coherent two-dimensional vortex dynamics in strongly interacting systems. Here, we overcome this challenge by confining a thin film of superfluid helium at microscale on the atomically smooth surface of a silicon chip. An on-chip optical microcavity allows laser initiation of clusters of quasi-two-dimensional vortices and nondestructive observation of their decay in a single shot. Coherent dynamics dominate, with thermal vortex diffusion suppressed by five orders of magnitude. This establishes an on-chip platform with which to study emergent phenomena in strongly interacting superfluids and to develop quantum technologies such as precision inertial sensors.

7.
Sci Adv ; 5(4): eaav0582, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30972362

RESUMO

To date, microscale and nanoscale optomechanical systems have enabled many proof-of-principle quantum operations through access to high-frequency (gigahertz) phonon modes that are readily cooled to their thermal ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize robust ground-state operation within these microstructures. In contrast, we demonstrate an alternative strategy for accessing high-frequency (13 GHz) phonons within macroscopic systems (centimeter scale) using phase-matched Brillouin interactions between two distinct optical cavity modes. Counterintuitively, we show that these macroscopic systems, with motional masses that are 1 million to 100 million times larger than those of microscale counterparts, offer a complementary path toward robust ground-state operation. We perform both optomechanically induced amplification/transparency measurements and demonstrate parametric instability of bulk phonon modes. This is an important step toward using these beam splitter and two-mode squeezing interactions within bulk acoustic systems for applications ranging from quantum memories and microwave-to-optical conversion to high-power laser oscillators.

9.
Nat Commun ; 7: 13628, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897181

RESUMO

Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

10.
Opt Lett ; 38(9): 1413-5, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23632502

RESUMO

We report on a hitherto unexplored application of squeezed light: for quantum-enhancement of mechanical transduction sensitivity in microcavity optomechanics. Using a toroidal silica microcavity, we experimentally demonstrate measurement of the transduced phase modulation signal in the frequency range 4-5.8 MHz with a sensitivity -0.72(±0.01) dB below the shot noise level. This is achieved for resonant probing in the highly undercoupled regime, by preparing the probe in a weak coherent state with phase squeezed vacuum states at sideband frequencies.

11.
Phys Rev Lett ; 111(10): 103603, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166666

RESUMO

The problem of estimating an unknown force driving a linear oscillator is revisited. When using linear measurement, feedback is often cited as a mechanism to enhance bandwidth, sensitivity or resolution. We show that as long as the oscillator dynamics are known, there exists a real-time estimation strategy that reproduces the same measurement record as any arbitrary feedback protocol. Consequently some form of nonlinearity is required to gain any advantage beyond estimation alone. This result holds true in both quantum and classical systems, with nonstationary forces and feedback, and in the general case of non-Gaussian and correlated noise. Recently, feedback enhanced incoherent force resolution has been demonstrated [E. Gavartin, P. Verlot, and T. J. Kippenberg, Nat. Nano. 7, 509 (2012)], with the enhancement attributed to a feedback induced modification of the mechanical susceptibility. As a proof-of-principle, we experimentally reproduce this result through straightforward filtering.

12.
Phys Rev Lett ; 104(12): 123604, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366533

RESUMO

We implement a cavity optoelectromechanical system integrating electrical actuation capabilities of nanoelectromechanical devices with ultrasensitive mechanical transduction achieved via intracavity optomechanical coupling. Electrical gradient forces as large as 0.40 microN are realized, with simultaneous mechanical transduction sensitivity of 1.5x10{-18} m Hz{-1/2} representing a 3 orders of magnitude improvement over any nanoelectromechanical system to date. Optoelectromechanical feedback cooling is demonstrated, exhibiting strong squashing of the in-loop transduction signal. Out-of-loop transduction provides accurate temperature calibration even in the critical paradigm where measurement backaction induces optomechanical correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA