Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 20(16): 2889-2910, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32661539

RESUMO

Ice-nucleating particles (INPs) are of atmospheric importance because they catalyse the freezing of supercooled cloud droplets, strongly affecting the lifetime and radiative properties of clouds. There is a need to improve our knowledge of the global distribution of INPs, their seasonal cycles and long-term trends, but our capability to make these measurements is limited. Atmospheric INP concentrations are often determined using assays involving arrays of droplets on a cold stage, but such assays are frequently limited by the number of droplets that can be analysed per experiment, often involve manual processing (e.g. pipetting of droplets), and can be susceptible to contamination. Here, we present a microfluidic platform, the LOC-NIPI (Lab-on-a-Chip Nucleation by Immersed Particle Instrument), for the generation of water-in-oil droplets and their freezing in continuous flow as they pass over a cold plate for atmospheric INP analysis. LOC-NIPI allows the user to define the number of droplets analysed by simply running the platform for as long as required. The use of small (∼100 µm diameter) droplets minimises the probability of contamination in any one droplet and therefore allows supercooling all the way down to homogeneous freezing (around -36 °C), while a temperature probe in a proxy channel provides an accurate measure of temperature without the need for temperature modelling. The platform was validated using samples of pollen extract and Snomax®, with hundreds of droplets analysed per temperature step and thousands of droplets being measured per experiment. Homogeneous freezing of purified water was studied using >10 000 droplets with temperature increments of 0.1 °C. The results were reproducible, independent of flow rate in the ranges tested, and the data compared well to conventional instrumentation and literature data. The LOC-NIPI was further benchmarked in a field campaign in the Eastern Mediterranean against other well-characterised instrumentation. The continuous flow nature of the system provides a route, with future development, to the automated monitoring of atmospheric INP at field sites around the globe.

2.
Cryobiology ; 93: 62-69, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32092295

RESUMO

Cryopreservation of mammalian cells has to date typically been conducted in cryovials, but there are applications where cryopreservation of primary cells in multiwell plates would be advantageous. However excessive supercooling in the small volumes of liquid in each well of the multiwell plates is inevitable without intervention and tends to result in high and variable cell mortality. Here, we describe a technique for cryopreservation of adhered primary bovine granulosa cells in 96-well plates by controlled rate freezing using controlled ice nucleation. Inducing ice nucleation at warm supercooled temperatures (less than 5 °C below the melting point) during cryopreservation using a manual seeding technique significantly improved post-thaw recovery from 29.6% (SD = 8.3%) where nucleation was left uncontrolled to 57.7% (9.3%) when averaged over 8 replicate cultures (p < 0.001). Detachment of thawed cells was qualitatively observed to be more prevalent in wells which did not have ice nucleation control which suggests cryopreserved cell monolayer detachment may be a consequence of deep supercooling. Using an infra-red thermography technique we showed that many aliquots of cryoprotectant solution in 96-well plates can supercool to temperatures below -20 °C when nucleation is not controlled, and also that the freezing temperatures observed are highly variable despite stringent attempts to remove contaminants acting as nucleation sites. We conclude that successful cryopreservation of cells in 96-well plates, or any small volume format, requires control of ice nucleation.


Assuntos
Criopreservação/métodos , Células da Granulosa , Animais , Bovinos , Temperatura Baixa , Crioprotetores/farmacologia , Feminino , Congelamento , Gelo
3.
Microfluid Nanofluidics ; 22(5): 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720926

RESUMO

Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 103-106 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK's annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA