Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973195

RESUMO

Organs and tissues age at different rates within a single individual. Such asynchrony in aging has been widely observed at multiple levels, from functional hallmarks, such as anatomical structures and physiological processes, to molecular endophenotypes, such as the transcriptome and metabolome. However, we lack a conceptual framework to understand why some components age faster than others. Just as demographic models explain why aging evolves, here we test the hypothesis that demographic differences among cell types, determined by cell-specific differences in turnover rate, can explain why the transcriptome shows signs of aging in some cell types but not others. Through analysis of mouse single-cell transcriptome data across diverse tissues and ages, we find that cellular age explains a large proportion of the variation in the age-related increase in transcriptome variance. We further show that long-lived cells are characterized by relatively high expression of genes associated with proteostasis and that the transcriptome of long-lived cells shows greater evolutionary constraint than short-lived cells. In contrast, in short-lived cell types, the transcriptome is enriched for genes associated with DNA repair. Based on these observations, we develop a novel heuristic model that explains how and why aging rates differ among cell types.

2.
G3 (Bethesda) ; 13(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37311212

RESUMO

Alzheimer's disease is characterized by 2 pathological proteins, amyloid beta 42 and tau. The majority of Alzheimer's disease cases in the population are sporadic and late-onset Alzheimer's disease, which exhibits high levels of heritability. While several genetic risk factors for late-onset Alzheimer's disease have been identified and replicated in independent studies, including the ApoE ε4 allele, the great majority of the heritability of late-onset Alzheimer's disease remains unexplained, likely due to the aggregate effects of a very large number of genes with small effect size, as well as to biases in sample collection and statistical approaches. Here, we present an unbiased forward genetic screen in Drosophila looking for naturally occurring modifiers of amyloid beta 42- and tau-induced ommatidial degeneration. Our results identify 14 significant SNPs, which map to 12 potential genes in 8 unique genomic regions. Our hits that are significant after genome-wide correction identify genes involved in neuronal development, signal transduction, and organismal development. Looking more broadly at suggestive hits (P < 10-5), we see significant enrichment in genes associated with neurogenesis, development, and growth as well as significant enrichment in genes whose orthologs have been identified as significantly or suggestively associated with Alzheimer's disease in human GWAS studies. These latter genes include ones whose orthologs are in close proximity to regions in the human genome that are associated with Alzheimer's disease, but where a causal gene has not been identified. Together, our results illustrate the potential for complementary and convergent evidence provided through multitrait GWAS in Drosophila to supplement and inform human studies, helping to identify the remaining heritability and novel modifiers of complex diseases.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Peptídeos beta-Amiloides/genética , Doença de Alzheimer/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35976114

RESUMO

Along with specialized functions, cells of multicellular organisms also perform essential functions common to most if not all cells. Whether diverse cells do this by using the same set of genes, interacting in a fixed coordinated fashion to execute essential functions, or a subset of genes specific to certain cells, remains a central question in biology. Here, we focus on gene coexpression to search for a core cellular network across a whole organism. Single-cell RNA-sequencing measures gene expression of individual cells, enabling researchers to discover gene expression patterns that contribute to the diversity of cell functions. Current efforts to study cellular functions focus primarily on identifying differentially expressed genes across cells. However, patterns of coexpression between genes are probably more indicative of biological processes than are the expression of individual genes. We constructed cell-type-specific gene coexpression networks using single-cell transcriptome datasets covering diverse cell types from the fruit fly, Drosophila melanogaster. We detected a set of highly coordinated genes preserved across cell types and present this as the best estimate of a core cellular network. This core is very small compared with cell-type-specific gene coexpression networks and shows dense connectivity. Gene members of this core tend to be ancient genes and are enriched for those encoding ribosomal proteins. Overall, we find evidence for a core cellular network in diverse cell types of the fruit fly. The topological, structural, functional, and evolutionary properties of this core indicate that it accounts for only a minority of essential functions.


Assuntos
Drosophila , Transcriptoma , Animais , Drosophila/genética , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA , Proteínas Ribossômicas/genética
5.
Aging Cell ; 21(2): e13548, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35019203

RESUMO

Many biomarkers have been shown to be associated not only with chronological age but also with functional measures of biological age. In human populations, it is difficult to show whether variation in biological age is truly predictive of life expectancy, as such research would require longitudinal studies over many years, or even decades. We followed adult cohorts of 20 Drosophila Genetic Reference Panel (DGRP) strains chosen to represent the breadth of lifespan variation, obtain estimates of lifespan, baseline mortality, and rate of aging, and associate these parameters with age-specific functional traits including fecundity and climbing activity and with age-specific targeted metabolomic profiles. We show that activity levels and metabolome-wide profiles are strongly associated with age, that numerous individual metabolites show a strong association with lifespan, and that the metabolome provides a biological clock that predicts not only sample age but also future mortality rates and lifespan. This study with 20 genotypes and 87 metabolites, while relatively small in scope, establishes strong proof of principle for the fly as a powerful experimental model to test hypotheses about biomarkers and aging and provides further evidence for the potential value of metabolomic profiles as biomarkers of aging.


Assuntos
Drosophila melanogaster , Metaboloma , Envelhecimento/genética , Animais , Biomarcadores/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Longevidade/genética , Metaboloma/genética
6.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34662414

RESUMO

Comparative phylogenetic studies offer a powerful approach to study the evolution of complex traits. Although much effort has been devoted to the evolution of the genome and to organismal phenotypes, until now relatively little work has been done on the evolution of the metabolome, despite the fact that it is composed of the basic structural and functional building blocks of all organisms. Here we explore variation in metabolite levels across 50 My of evolution in the genus Drosophila, employing a common garden design to measure the metabolome within and among 11 species of Drosophila. We find that both sex and age have dramatic and evolutionarily conserved effects on the metabolome. We also find substantial evidence that many metabolite pairs covary after phylogenetic correction, and that such metabolome coevolution is modular. Some of these modules are enriched for specific biochemical pathways and show different evolutionary trajectories, with some showing signs of stabilizing selection. Both observations suggest that functional relationships may ultimately cause such modularity. These coevolutionary patterns also differ between sexes and are affected by age. We explore the relevance of modular evolution to fitness by associating modules with lifespan variation measured in the same common garden. We find several modules associated with lifespan, particularly in the metabolome of older flies. Oxaloacetate levels in older females appear to coevolve with lifespan, and a lifespan-associated module in older females suggests that metabolic associations could underlie 50 My of lifespan evolution.


Assuntos
Drosophila , Metaboloma , Animais , Evolução Biológica , Drosophila/genética , Drosophila/metabolismo , Feminino , Longevidade/genética , Fenótipo , Filogenia
7.
Elife ; 102021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34751131

RESUMO

To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered a wide diversity of replicative lifespan (RLS). Phylogenetic analyses pointed to genes and environmental factors that strongly interact to modulate the observed aging patterns. We then identified genetic networks causally associated with natural variation in RLS across wild yeast isolates, as well as genes, metabolites, and pathways, many of which have never been associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique adaptations to interconnected amino acid biosynthesis, glutamate metabolism, and mitochondrial function in long-lived strains. Overall, our multiomic and lifespan analyses across diverse isolates of the same species shows how gene-environment interactions shape cellular processes involved in phenotypic variation such as lifespan.


Assuntos
Redes Reguladoras de Genes , Genes Fúngicos , Saccharomyces cerevisiae/fisiologia , Saccharomyces/fisiologia , Saccharomyces/genética , Saccharomyces cerevisiae/genética
8.
PLoS Genet ; 16(7): e1008835, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32644988

RESUMO

In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as "hub" metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait.


Assuntos
Envelhecimento/genética , Proteínas de Drosophila/genética , Longevidade/genética , Metaboloma/genética , Receptores Acoplados a Proteínas G/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Restrição Calórica , Dieta , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Insulina/genética , Metabolômica , Mutação/genética , Transdução de Sinais/genética
9.
BMC Genomics ; 21(1): 341, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366330

RESUMO

BACKGROUND: Genetic association studies that seek to explain the inheritance of complex traits typically fail to explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype to phenotype. Several approaches have been used to fill this gap, including those that attempt to map endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used metabolomics to explore the nature of genetic variation for hydrogen peroxide (H2O2) resistance in the sequenced inbred Drosophila Genetic Reference Panel (DGRP). RESULTS: We first studied genetic variation for H2O2 resistance in 179 DGRP lines and along with identifying the insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a portion of the aqueous metabolome in subsets of eight 'high resistance' lines and eight 'low resistance' lines. We used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor, effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a metabolic response to H2O2 in sensitive, but not in resistant genotypes. Metabolomic data further implicated at least two pathways, glycogen and folate metabolism, as determinants of sensitivity to H2O2. We also discovered a confounding effect of feeding behavior on assays involving supplemented food. CONCLUSIONS: This work suggests that the metabolome can be a point of convergence for genetic variation influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.


Assuntos
Drosophila melanogaster/fisiologia , Peróxido de Hidrogênio/metabolismo , Metaboloma , Estresse Oxidativo/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Ácido Fólico/metabolismo , Genes de Insetos/genética , Variação Genética , Genoma de Inseto/genética , Genótipo , Glicogênio/metabolismo , Redes e Vias Metabólicas/genética , Herança Multifatorial , Fenótipo
10.
J Neurophysiol ; 122(4): 1598-1605, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365318

RESUMO

Essential tremor (ET) is a common movement disorder that causes motor deficits similar to those seen in cerebellar disorders. These include kinetic tremor, gait ataxia, and impaired motor adaptation. Previous studies of motor adaptation in ET have focused on reaching while the effects of ET on gait adaptation are currently unknown. The purpose of this study was to contrast locomotor adaptation in persons with and without ET. We hypothesized that persons with ET would show impaired gait adaptation. In a cross-sectional study, persons with ET (n = 14) and healthy matched controls (n = 12) walked on a split-belt treadmill. Participants walked with the belts moving at a 2:1 ratio, followed by overground walking to test transfer, followed by a readaptation period and finally a deadaptation period. Step length asymmetry was measured to assess the rate of adaptation, amount of transfer, and rates of readaptation and deadaptation. Spatial, temporal, and velocity contributions to step length asymmetry were analyzed during adaptation. There were no group by condition interactions in step length asymmetry or contributions to step length asymmetry. Regardless of condition, persons with ET walked slower and exhibited lower temporal (P < 0.001) and velocity (P = 0.001) contributions to step length asymmetry than controls. Persons with ET demonstrated a preserved ability to adapt to, store, and transfer a new walking pattern. Despite probable cerebellar involvement in ET, locomotor adaptation is an available mechanism to teach persons with ET new gait patterns.NEW & NOTEWORTHY This study is the first to investigate walking adaptation abilities of people with essential tremor. Despite evidence of cerebellar impairment in this population, people with essential tremor can adapt their walking patterns. However, people with essential tremor do not modulate the timing of their footsteps to meet walking demands. Therefore, this study is the first to report impairments in the temporal aspects of walking in people with essential tremor during both typical and locomotor learning.


Assuntos
Adaptação Fisiológica , Tremor Essencial/fisiopatologia , Caminhada , Idoso , Cerebelo/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Methods Mol Biol ; 1309: 1-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25981763

RESUMO

We describe a simple method to preserve information about a plant organ's orientation relative to the direction of the gravity vector during sample processing for immunolocalization or histochemical analysis of cell biological processes. This approach has been used in gravity stimulated roots of Arabidopsis thaliana and Zea mays to study PIN3 relocalization, study the asymmetrical remodeling of the actin network and the cortical microtubule array, and to reveal the asymmetrical expression of the auxin signaling reporter DR5::GUS. This method enables the rapid analysis of a large number of samples from a variety of genotypes, as well as from tissue that may be too thick for microscopy in live plants.


Assuntos
Arabidopsis/genética , Biologia Celular , Imuno-Histoquímica/métodos , Zea mays/genética , Actinas/genética , Actinas/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Gravitação , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Zea mays/citologia
12.
Biochem Cell Biol ; 87(5): 767-79, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19898526

RESUMO

There are a number of well-characterized and fundamental roles for noncoding RNAs (ncRNAs) in gene regulation in all kingdoms of life. ncRNAs, such as ribosomal RNAs, transfer RNAs, small nuclear RNAs, small nucleolar RNAs, and small interfering RNAs, can serve catalytic and scaffolding functions in transcription, messenger RNA processing, translation, and RNA degradation. Recently, our understanding of gene expression has been dramatically challenged by the identification of large and diverse populations of novel ncRNAs in the eukaryotic genomes surveyed thus far. Studies carried out using the budding yeast Saccharomyces cerevisiae indicate that at least some coding genes are regulated by these novel ncRNAs. S. cerevisiae lacks RNA interference (RNAi) and, thus, provides an ideal system for studying the RNAi-independent mechanisms of ncRNA-based gene regulation. The current picture of gene regulation is one of great unknowns, in which the transcriptional environment surrounding a given locus may have as much to do with its regulation as its DNA sequence or local chromatin structure. Drawing on the recent research in S. cerevisiae and other organisms, this review will discuss the identification of ncRNAs, their origins and processing, and several models that incorporate ncRNAs into the regulation of gene expression and chromatin structure.


Assuntos
Vida , Interferência de RNA/fisiologia , RNA não Traduzido/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular/genética , Modelos Biológicos , Processamento Pós-Transcricional do RNA/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/fisiologia
13.
Plant J ; 53(2): 380-92, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18047472

RESUMO

ALTERED RESPONSE TO GRAVITY1 (ARG1) and its paralog ARG1-LIKE2 (ARL2) are J-domain proteins that are required for normal root and hypocotyl gravitropism. In this paper, we show that both ARL2 and ARG1 function in a gravity signal transduction pathway with PIN3, an auxin efflux facilitator that is expressed in the statocytes. In gravi-stimulated roots, PIN3 relocalizes to the lower side of statocytes, a process that is thought to, in part, drive the asymmetrical redistribution of auxin toward the lower flank of the root. We show that ARL2 and ARG1 are required for PIN3 relocalization and asymmetrical distribution of auxin upon gravi-stimulation. ARL2 is expressed specifically in the root statocytes, where it localizes to the plasma membrane. Upon ectopic expression, ARL2 is also found at the cell plate of dividing cells during cytokinesis, an area of intense membrane dynamics. Mutations in ARL2 and ARG1 also result in auxin-related expansion of the root cap columella, consistent with a role for ARL2 and ARG1 in regulating auxin flux through the root tip. Together these data suggest that ARL2 and ARG1 functionally link gravity sensation in the statocytes to auxin redistribution through the root cap.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gravitação , Gravitropismo/fisiologia , Hipocótilo/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/citologia
14.
Plant Physiol ; 142(2): 564-73, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16891550

RESUMO

Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Gravitropismo/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Citoplasma/química , Citoplasma/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Hipocótilo/metabolismo , Ácidos Indolacéticos , Mutação , Raízes de Plantas/citologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Tirosina Quinases/genética , Espermina
15.
Ann Bot ; 96(5): 737-43, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16033778

RESUMO

AIMS: The molecular mechanisms that correlate with gravity perception and signal transduction in the tip of angiosperm primary roots are discussed. SCOPE: Gravity provides a cue for downward orientation of plant roots, allowing anchorage of the plant and uptake of the water and nutrients needed for growth and development. Root gravitropism involves a succession of physiological steps: gravity perception and signal transduction (mainly mediated by the columella cells of the root cap); signal transmission to the elongation zone; and curvature response. Interesting new insights into gravity perception and signal transduction within the root tip have accumulated recently by use of a wide range of experimental approaches in physiology, biochemistry, genetics, genomics, proteomics and cell biology. The data suggest a network of signal transduction pathways leading to a lateral redistribution of auxin across the root cap and a possible involvement of cytokinin in initial phases of gravicurvature. CONCLUSION: These new discoveries illustrate the complexity of a highly redundant gravity-signalling process in roots, and help to elucidate the global mechanisms that govern auxin transport and morphogenetic regulation in roots.


Assuntos
Gravitropismo/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transdução de Sinais/fisiologia , Canais Iônicos/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA