RESUMO
The IQ Consortium's DruSafe Leadership Group previously reported results of a nonclinical to clinical translational database for First-In-Human (FIH)-enabling animal toxicology studies. We have completed an additional translational database populated with longer duration (>1 month) animal toxicology studies and longer duration (Phase 2 and beyond) clinical trials. The blinded database was composed of 127 molecules. Animal and clinical data were categorized by organ system and animal model (e.g. rodent, dog). The 2 × 2 contingency table (true positive, false positive, true negative, false negative) was used for statistical analysis and both the positive predictive value (PPV) and negative predictive value (NPV) were determined. As also reported in the FIH database, the NPV was the strongest predictive performance measure at 96 %. The PPV was lower than the FIH database with the rodent at 29 %, dog at 21 % and NHP at 20 %. No new additional target organs were observed in 62 % of the entries. A new target organ was identified in 38 % of the entries, with the majority in a rodent (26 %) and fewer in the dog (8 %) or NHP (12 %). However, new target organ data resulted in only a PPV of 13 %, suggesting that current ICH requirements for longer duration animal general toxicology studies should be re-evaluated and better aligned with the 3Rs. A newer paradigm could include an appropriately justified single animal model for longer duration studies, in addition to utilizing New Approach Methods (NAMs) that would provide translational safety data, but additional research is needed.
RESUMO
Pharmaceutic products designed to perturb the function of epigenetic modulators have been approved by regulatory authorities for treatment of advanced cancer. While the predominant effort in epigenetic drug development continues to be in oncology, non-oncology indications are also garnering interest. A survey of pharmaceutical companies was conducted to assess the interest and concerns for developing small molecule direct epigenetic effectors (EEs) as medicines. Survey themes addressed (1) general levels of interest and activity with EEs as therapeutic agents, (2) potential safety concerns, and (3) possible future efforts to develop targeted strategies for nonclinical safety assessment of EEs. Thirteen companies contributed data to the survey. Overall, the survey data indicate the consensus opinion that existing ICH guidelines are effective and appropriate for nonclinical safety assessment activities with EEs. Attention in the framework of study design should, on a case by case basis, be considered for delayed or latent toxicities, carcinogenicity, reproductive toxicity, and the theoretical potential for transgenerational effects. While current guidelines have been appropriate for the nonclinical safety assessments of epigenetic targets, broader experience with a wide range of epigenetic targets will provide information to assess the potential need for new or revised risk assessment strategies for EE drugs.
Assuntos
Indústria Farmacêutica/normas , Controle de Medicamentos e Entorpecentes , Epigênese Genética/efeitos dos fármacos , Preparações Farmacêuticas/normas , Inquéritos e Questionários , Animais , Avaliação Pré-Clínica de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/tendências , Indústria Farmacêutica/tendências , Controle de Medicamentos e Entorpecentes/tendências , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Epigênese Genética/genética , Humanos , Preparações Farmacêuticas/administração & dosagem , Medição de Risco/normas , Medição de Risco/tendênciasRESUMO
Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of arginines on proteins. Type I PRMTs and their substrates have been implicated in human cancers, suggesting inhibition of type I PRMTs may offer a therapeutic approach for oncology. The current report describes GSK3368715 (EPZ019997), a potent, reversible type I PRMT inhibitor with anti-tumor effects in human cancer models. Inhibition of PRMT5, the predominant type II PRMT, produces synergistic cancer cell growth inhibition when combined with GSK3368715. Interestingly, deletion of the methylthioadenosine phosphorylase gene (MTAP) results in accumulation of the metabolite 2-methylthioadenosine, an endogenous inhibitor of PRMT5, and correlates with sensitivity to GSK3368715 in cell lines. These data provide rationale to explore MTAP status as a biomarker strategy for patient selection.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/deficiência , Processamento Alternativo , Antineoplásicos/química , Biomarcadores , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Metilação , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Proteína-Arginina N-Metiltransferases/química , Especificidade por SubstratoRESUMO
The contribution of animal testing in drug development has been widely debated and challenged. An industry-wide nonclinical to clinical translational database was created to determine how safety assessments in animal models translate to First-In-Human clinical risk. The blinded database was composed of 182 molecules and contained animal toxicology data coupled with clinical observations from phase I human studies. Animal and clinical data were categorized by organ system and correlations determined. The 2×2 contingency table (true positive, false positive, true negative, false negative) was used for statistical analysis. Sensitivity was 48% with a 43% positive predictive value (PPV). The nonhuman primate had the strongest performance in predicting adverse effects, especially for gastrointestinal and nervous system categories. When the same target organ was identified in both the rodent and nonrodent, the PPV increased. Specificity was 84% with an 86% negative predictive value (NPV). The beagle dog had the strongest performance in predicting an absence of clinical adverse effects. If no target organ toxicity was observed in either test species, the NPV increased. While nonclinical studies can demonstrate great value in the PPV for certain species and organ categories, the NPV was the stronger predictive performance measure across test species and target organs indicating that an absence of toxicity in animal studies strongly predicts a similar outcome in the clinic. These results support the current regulatory paradigm of animal testing in supporting safe entry to clinical trials and provide context for emerging alternate models.
Assuntos
Bases de Dados Factuais , Pesquisa Translacional Biomédica , Animais , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Modelos Animais , Medição de RiscoRESUMO
Epigenetic dysregulation has emerged as an important mechanism in cancer. Alterations in epigenetic machinery have become a major focus for targeted therapies. The current report describes the discovery and biological activity of a cyclopropylamine containing inhibitor of Lysine Demethylase 1 (LSD1), GSK2879552. This small molecule is a potent, selective, orally bioavailable, mechanism-based irreversible inactivator of LSD1. A proliferation screen of cell lines representing a number of tumor types indicated that small cell lung carcinoma (SCLC) is sensitive to LSD1 inhibition. The subset of SCLC lines and primary samples that undergo growth inhibition in response to GSK2879552 exhibit DNA hypomethylation of a signature set of probes, suggesting this may be used as a predictive biomarker of activity.
Assuntos
Antineoplásicos/administração & dosagem , Benzoatos/administração & dosagem , Ciclopropanos/administração & dosagem , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Histona Desmetilases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Administração Oral , Animais , Antineoplásicos/farmacologia , Benzoatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclopropanos/farmacologia , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Dados de Sequência Molecular , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
N-tert-Butyl isoquine (4) (GSK369796) is a 4-aminoquinoline drug candidate selected and developed as part of a public-private partnership between academics at Liverpool, MMV, and GSK pharmaceuticals. This molecule was rationally designed based on chemical, toxicological, pharmacokinetic, and pharmacodynamic considerations and was selected based on excellent activity against Plasmodium falciparum in vitro and rodent malaria parasites in vivo. The optimized chemistry delivered this novel synthetic quinoline in a two-step procedure from cheap and readily available starting materials. The molecule has a full industry standard preclinical development program allowing first into humans to proceed. Employing chloroquine (1) and amodiaquine (2) as comparator molecules in the preclinical plan, the first preclinical dossier of pharmacokinetic, toxicity, and safety pharmacology has also been established for the 4-aminoquinoline antimalarial class. These studies have revealed preclinical liabilities that have never translated into the human experience. This has resulted in the availability of critical information to other drug development teams interested in developing antimalarials within this class.
Assuntos
Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Benzilaminas/farmacologia , Aminoquinolinas/síntese química , Aminoquinolinas/química , Aminoquinolinas/farmacocinética , Aminoquinolinas/toxicidade , Amodiaquina/análogos & derivados , Animais , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Antimaláricos/toxicidade , Benzilaminas/síntese química , Benzilaminas/química , Benzilaminas/toxicidade , Inibidores das Enzimas do Citocromo P-450 , Cães , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Feminino , Haplorrinos , Heme/química , Humanos , Malária/tratamento farmacológico , Camundongos , Modelos Moleculares , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii , Ratos , Relação Estrutura-AtividadeRESUMO
Respiratory syncytial virus (RSV) is an important human pathogen that can cause severe and life-threatening respiratory infections in infants, the elderly, and immunocompromised adults. RSV infection of HEp-2 cells induces the activation of RhoA, a small GTPase. We therefore asked whether RhoA signaling is important for RSV replication or syncytium formation. The treatment of HEp-2 cells with Clostridium botulinum C3, an enzyme that ADP-ribosylates and specifically inactivates RhoA, inhibited RSV-induced syncytium formation and cell-to-cell fusion, although similar levels of PFU were released into the medium and viral protein expression levels were equivalent. Treatment with another inhibitor of RhoA signaling, the Rho kinase inhibitor Y-27632, yielded similar results. Scanning electron microscopy of C3-treated infected cells showed reduced numbers of single blunted filaments, in contrast to the large clumps of long filaments in untreated infected cells. These data suggest that RhoA signaling is associated with filamentous virus morphology, cell-to-cell fusion, and syncytium formation but is dispensable for the efficient infection and production of infectious virus in vitro. Next, we developed a semiquantitative method to measure spherical and filamentous virus particles by using sucrose gradient velocity sedimentation. Fluorescence and transmission electron microscopy confirmed the separation of spherical and filamentous forms of infectious virus into two identifiable peaks. The C3 treatment of RSV-infected cells resulted in a shift to relatively more spherical virions than those from untreated cells. These data suggest that viral filamentous protuberances characteristic of RSV infection are associated with RhoA signaling, are important for filamentous virion morphology, and may play a role in initiating cell-to-cell fusion.
Assuntos
Vírus Sinciciais Respiratórios/fisiologia , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , ADP Ribose Transferases/farmacologia , Amidas/farmacologia , Toxinas Botulínicas/farmacologia , Linhagem Celular , Células Gigantes/ultraestrutura , Humanos , Piridinas/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/ultraestrutura , Replicação Viral , Proteína rhoA de Ligação ao GTP/antagonistas & inibidoresRESUMO
Recombinant human interleukin-18 (rHuIL-18) is currently in clinical trials for treatment of cancer. This report presents results of preclinical toxicity studies with rHuIL-18 in cynomolgus monkeys and recombinant murine IL-18 (rMuIL-18) in mice. The rHuIL-18 was administered intravenously in 1 or 2 different 5-day cycles at doses 0.3 to 75 mg/kg/day in monkeys. Decreases in red cell mass, neutrophil, and platelet counts, increases in monocyte and large unstained cell counts, and lymphoid hyperplasia in spleen and lymph nodes were mild, reversible, and likely related to the pharmacologic activity of IL-18. The only toxic effect was protein cast nephropathy, secondary to coprecipitation of administered IL-18 and Tamm-Horsfall protein in the distal nephron, that only occurred at 75 mg/kg/day. Other adverse effects of rHuIL-18 were related to strong immunogenicity in monkeys and were manifest only during a second dosing cycle. The rMuIL-18, at similar dosing levels and cycles in mice, resulted in reduced red cell mass, increased white blood cell counts, spleen and lymph node hyperplasia, and mild, reversible changes in intestine, liver, and lungs. Protein cast nephropathy occurred in mice at doses > or = 30 mg/kg/day. In conclusion, preclinical safety studies showed that rIL-18 was well tolerated at pharmacologically active doses in both monkeys and mice.
Assuntos
Interleucina-18/toxicidade , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Hiperplasia , Imuno-Histoquímica , Injeções Intravenosas , Interleucina-18/administração & dosagem , Interleucina-18/farmacocinética , Rim/efeitos dos fármacos , Rim/patologia , Rim/ultraestrutura , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mucoproteínas/efeitos dos fármacos , Nefrose Lipoide/etiologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/toxicidade , Baço/efeitos dos fármacos , Baço/patologia , Fatores de Tempo , UromodulinaRESUMO
Troglitazone (TRO), a member of the thiazolidinedione class of drugs, has been associated with hepatotoxicity in patients. The following in vitro study was conducted to investigate the effects of TRO on mitochondrial function and viability in a human hepatoma cell line, HepG2. TRO induced a concentration- and time-dependent increase in cell death, as measured by lactate dehydrogenase release. Exposure to 50 or 100 micro M TRO produced total loss of cell viability within 5 h. Preincubation of HepG2 cells with P450 inhibitors did not significantly protect against TRO-induced cell death suggesting that P450 metabolism was not required to induce cell death. Preincubation with the mitochondrial permeability transition inhibitor, cyclosporin A, provided complete protection against TRO-induced cell death. Our results also indicated that TRO produced concentration-dependent decreases in cellular ATP levels and mitochondrial membrane potential (MMP). Ultrastructural analysis demonstrated that TRO induced mitochondrial changes at concentrations of > or =10 micro M after 2 h. Decreased MMP and altered mitochondrial morphology occurred at time points that preceded cell death and at sublethal concentrations of TRO. These observations in HepG2 cells suggest that TRO disrupts mitochondrial function, leading to mitochondrial permeability transition and cell death.
Assuntos
Cromanos/farmacologia , Hipoglicemiantes/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Tiazóis/farmacologia , Tiazolidinedionas , Trifosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450 , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Microscopia Confocal , Microscopia Eletrônica , Mitocôndrias Hepáticas/ultraestrutura , Permeabilidade , Fatores de Tempo , Troglitazona , Células Tumorais CultivadasRESUMO
BACKGROUND AND PURPOSE: Although used clinically to prevent stroke, there are few examples of anticoagulant investigations in the treatment of acute thromboembolic stroke in animal models. The treatment of thromboembolic stroke in experimental models has been investigated almost exclusively around the use of tissue plasminogen activator (tPA). In this study, using a rat thromboembolic stroke model, we investigated the use of an inhibitory anti-factor IX(a) monoclonal antibody (SB 249417) for the treatment of thromboembolic stroke and compared its efficacy to that of tPA. METHODS: Stroke was initiated by delivering 6 clots into the internal carotid artery. After 2, 4, or 6 hours, rats received either intravenous vehicle, 10.0 mg/kg tPA, or 1.0, 2.0, or 3.0 mg/kg SB 249417. At 24 hours after stroke, infarct volumes and neurological deficits were assessed. RESULTS: Treatment with tPA 2, 4, or 6 hours after stroke reduced infarct volumes by 35% (P=NS), 45%, and 39%, respectively. tPA treatment did not improve neurological deficits at any time point. Treatment with SB 249417 (3.0 mg/kg) 2, 4, or 6 hours after stroke reduced infarct volumes by 44%, 50%, and 13% (P=NS), respectively. Neurological deficits were reduced by 49%, 42%, and 13% (P=NS), respectively. Neither mortality nor hemorrhage was affected by either treatment. CONCLUSIONS: The data indicate that the inhibition of factor IX(a) within 4 hours of thromboembolic stroke produced a more favorable outcome than tPA. When treatment was initiated 6 hours after stroke, the benefits of factor IX(a) inhibition were lost, whereas tPA continued to suppress lesion development, albeit without a corresponding improvement in functional deficits. This study suggests that cerebral ischemia and the resultant perfusion deficit are exacerbated by the activation of blood coagulation and that anticoagulants like SB 249417 may find utility in the treatment of ischemic stroke.