Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12477-12488, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699877

RESUMO

Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.


Assuntos
Hidrogéis , Nanofibras , Peptídeos , Nanofibras/química , Peptídeos/química , Hidrogéis/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Anisotropia , Animais
2.
Biomedicines ; 12(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672274

RESUMO

Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy. We have developed STINGel, an extended-release formulation that prolongs the availability of STING agonists, which has demonstrated an enhanced anti-tumor effect in OSCC compared to STING agonist injection. This study investigates the impact of intra-tumoral STINGel on OSCC-induced pain using two separate OSCC models and nociceptive behavioral assays. Intra-tumoral STINGel significantly reduced mechanical allodynia in the orofacial cancer model and alleviated thermal and mechanical hyperalgesia in the hind paw model. To determine the cellular signaling cascade contributing to the antinociceptive effect, we performed an in-depth analysis of immune cell populations via single-cell RNA-seq. We demonstrated an increase in M1-like macrophages and N1-like neutrophils after STINGel treatment. The identified regulatory pathways controlled immune response activation, myeloid cell differentiation, and cytoplasmic translation. Functional pathway analysis demonstrated the suppression of translation at neuron synapses and the negative regulation of neuron projection development in M2-like macrophages after STINGel treatment. Importantly, STINGel treatment upregulated TGF-ß pathway signaling between various cell populations and peripheral nervous system (PNS) macrophages and enhanced TGF-ß signaling within the PNS itself. Overall, this study sheds light on the mechanisms underlying STINGel-mediated antinociception and anti-tumorigenic impact.

3.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496534

RESUMO

Toll-like receptors (TLRs) recognize pathogen- and damage-associated molecular patterns and, in turn, trigger the release of cytokines and other immunostimulatory molecules. As a result, TLR agonists are increasingly being investigated as vaccine adjuvants, though many of these agonists are small molecules that quickly diffuse away from the vaccination site, limiting their co-localization with antigens and, thus, their effect. Here, the small-molecule TLR7 agonist 1V209 is conjugated to a positively-charged multidomain peptide (MDP) hydrogel, K 2 , which was previously shown to act as an adjuvant promoting humoral immunity. Mixing the 1V209-conjugated K 2 50:50 with the unfunctionalized K 2 produces hydrogels that retain the shear-thinning and self-healing physical properties of the original MDP, while improving the solubility of 1V209 more than 200-fold compared to the unconjugated molecule. When co-delivered with ovalbumin as a model antigen, 1V209-functionalized K 2 produces antigen-specific IgG titers that were statistically similar to alum, the gold standard adjuvant, and a significantly lower ratio of Th2-associated IgG1 to Th1-associated IgG2a than alum, suggesting a more balanced Th1 and Th2 response. Together, these results suggest that K 2 MDP hydrogels functionalized with 1V209 are a promising adjuvant for vaccines against infectious diseases, especially those benefiting from a combined Th1 and Th2 immune response. Table of Contents: Activation of toll-like receptors (TLRs) stimulates a signaling cascade to induce an immune response. A TLR7 agonist was conjugated to an injectable peptide hydrogel, which was then used to deliver a model vaccine antigen. This platform produced antibody titers similar to the gold standard adjuvant alum and demonstrated an improved balance between Th1- and Th2-mediated immunity over alum.

4.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352501

RESUMO

Fibrous proteins that comprise the extracellular matrix (ECM) guide cellular growth and tissue organization. A lack of synthetic strategies able to generate aligned, ECM-mimetic biomaterials has hampered bottom-up tissue engineering of anisotropic tissues and led to a limited understanding of cell-matrix interactions. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical structures. We establish how modest changes in phosphate buffer concentration during peptide self-assembly can be used to tune their alignment and packing. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an ECM-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to generate a gradient of anisotropic nanofibrous hydrogels, which are used to better understand directed cell growth.

5.
ACS Biomater Sci Eng ; 10(3): 1448-1460, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38385283

RESUMO

T cells have the ability to recognize and kill specific target cells, giving therapies based on their potential for treating infection, diabetes, cancer, and other diseases. However, the advancement of T cell-based treatments has been hindered by difficulties in their ex vivo activation and expansion, the number of cells required for sustained in vivo levels, and preferential localization following systemic delivery. Biomaterials may help to overcome many of these challenges by providing a combined means of proliferation, antigen presentation, and cell localization upon delivery. In this work, we studied self-assembling Multidomain Peptides (MDPs) as scaffolds for T cell culture, activation, and expansion. We evaluated the effect of different MDP chemistries on their biocompatibility with T cells and the maintenance of antigen specificity for T cells cultured in the hydrogels. We also examined the potential application of MDPs as scaffolds for T cell activation and expansion and the effect of MDP encapsulation on T cell phenotype. We found high cell viability when T cells were encapsulated in noncationic MDPs, O5 and D2, and superior retention of antigen specificity and tumor-reactivity were preserved in the anionic MDP, D2. Maintenance of antigen recognition by T cells in D2 hydrogels was confirmed by quantifying immune synapses of T Cells engaged with antigen-presenting cancer cells. When 3D cultured in anionic MDP D2 coloaded with anti-CD3, anti-CD28, IL2, IL7, and IL15, we observed successful T cell proliferation evidenced by upregulation of CD27 and CD107a. This study is the first to investigate the potential of self-assembling peptide-based hydrogels as 3D scaffolds for human T cell applications and demonstrates that MDP hydrogels are a viable platform for enabling T cell in vitro activation, expansion, and maintenance of antigen specificity and therefore a promising tool for future T cell-based therapies.


Assuntos
Nanofibras , Neoplasias , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Linfócitos T , Peptídeos/química , Proliferação de Células
6.
Biomacromolecules ; 24(11): 5083-5090, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37871141

RESUMO

Collagen mimetic peptides are composed of triple helices. Triple helical formation frequently utilizes charge pair interactions to direct protein assembly. The design of synthetic triple helices is challenging due to the large number of competing species and the overall fragile nature of collagen mimetics. A successfully designed triple helix incorporates both positive and negative criteria to achieve maximum specificity of the supramolecular assembly. Intrahelical charge pair interactions, particularly those involved in lysine-aspartate and lysine-glutamate pairs, have been especially successful both in driving helix specificity and for subsequent stabilization by covalent capture. Despite this progress, the important sequential and geometric relationships of charged residues in a triple helical context have not been fully explored for either supramolecular assembly or covalent capture stabilization. In this study, we compare the eight canonical axial and lateral charge pairs of lysine and arginine with glutamate and aspartate to their noncanonical, reversed charge pairs. These findings are put into the context of collagen triple helical design and synthesis.


Assuntos
Ácido Aspártico , Lisina , Modelos Moleculares , Colágeno/química , Ácido Glutâmico
7.
Biomacromolecules ; 24(11): 5018-5026, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37690094

RESUMO

Self-assembled nanomaterials are promising candidates for drug delivery by providing a higher degree of spatiotemporal control compared to free drugs. However, challenges such as burst release, inadequate targeting, and drug-nanomaterial incompatibility leave room for improvement. The combination of orthogonal self-assembling systems can result in more useful materials that improve upon these weaknesses. In this work, we investigate an orthogonal self-assembling system of nanofibrous MultiDomain Peptide (MDP) hydrogels encapsulating liposomes. Both positively charged and negatively charged MDPs were prepared and mixed with positively charged, negatively charged, or zwitterionic liposomes for a total of six composites. We demonstrate that, despite both systems being amphiphilic, they are able to mix while retaining their independent identities. We show that changing the charge of either liposomes or MDPs does not hinder the self-assembly of either system or significantly affect their rheological properties. In all six cases, small molecules encapsulated in liposome-MDP composites resulted in slower release than was possible in MDP hydrogels alone. However, in one case, positively charged MDPs destabilized negatively charged liposomes and resulted in a unique release profile. Finally, we show that MDP hydrogels substantially decrease the release of chemotherapeutic doxorubicin from its liposomal formulation, Doxil, for 24 h. This work demonstrates the chemical compatibility of amphiphilic, orthogonally self-assembled systems and the range of their drug-delivering capabilities.


Assuntos
Hidrogéis , Lipossomos , Lipossomos/química , Hidrogéis/química , Sistemas de Liberação de Medicamentos , Peptídeos/química
8.
Front Bioeng Biotechnol ; 11: 1139782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937769

RESUMO

Self-assembling peptides are a type of biomaterial rapidly emerging in the fields of biomedicine and material sciences due to their promise in biocompatibility and effectiveness at controlled release. These self-assembling peptides can form diverse nanostructures in response to molecular interactions, making them versatile materials. Once assembled, the peptides can mimic biological functions and provide a combinatorial delivery of therapeutics such as cytokines and drugs. These self-assembling peptides are showing success in biomedical settings yet face unique challenges that must be addressed to be widely applied in the clinic. Herein, we describe self-assembling peptides' characteristics and current applications in immunomodulatory therapeutics.

9.
J Am Chem Soc ; 145(9): 5285-5296, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812303

RESUMO

The folding of collagen is a hierarchical process that starts with three peptides associating into the characteristic triple helical fold. Depending on the specific collagen in question, these triple helices then assemble into bundles reminiscent of α-helical coiled-coils. Unlike α-helices, however, the bundling of collagen triple helices is very poorly understood with almost no direct experimental data available. In order to shed light on this critical step of collagen hierarchical assembly, we have examined the collagenous region of complement component 1q. Thirteen synthetic peptides were prepared to dissect the critical regions allowing for its octadecameric self-assembly. We find that short peptides (under 40 amino acids) are able to self-assemble into specific (ABC)6 octadecamers. This requires the ABC heterotrimeric composition as the self-assembly subunit, but does not require disulfide bonds. Self-assembly into this octadecamer is aided by short noncollagenous sequences at the N-terminus, although they are not entirely required. The mechanism of self-assembly appears to begin with the very slow formation of the ABC heterotrimeric helix, followed by rapid bundling of triple helices into progressively larger oligomers, terminating in the formation of the (ABC)6 octadecamer. Cryo-electron microscopy reveals the (ABC)6 assembly as a remarkable, hollow, crown-like structure with an open channel approximately 18 Å at the narrow end and 30 Å at the wide end. This work helps to illuminate the structure and assembly mechanism of a critical protein in the innate immune system and lays the groundwork for the de novo design of higher order collagen mimetic peptide assemblies.


Assuntos
Colágeno , Peptídeos , Sequência de Aminoácidos , Microscopia Crioeletrônica , Peptídeos/química , Colágeno/química , Conformação Proteica em alfa-Hélice
10.
Adv Mater ; 35(11): e2210378, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36604310

RESUMO

3D printing has become one of the primary fabrication strategies used in biomedical research. Recent efforts have focused on the 3D printing of hydrogels to create structures that better replicate the mechanical properties of biological tissues. These pose a unique challenge, as soft materials are difficult to pattern in three dimensions with high fidelity. Currently, a small number of biologically derived polymers that form hydrogels are frequently reused for 3D printing applications. Thus, there exists a need for novel hydrogels with desirable biological properties that can be used as 3D printable inks. In this work, the printability of multidomain peptides (MDPs), a class of self-assembling peptides that form a nanofibrous hydrogel at low concentrations, is established. MDPs with different charge functionalities are optimized as distinct inks and are used to create complex 3D structures, including multi-MDP prints. Additionally, printed MDP constructs are used to demonstrate charge-dependent differences in cellular behavior in vitro. This work presents the first time that self-assembling peptides have been used to print layered structures with overhangs and internal porosity. Overall, MDPs are a promising new class of 3D printable inks that are uniquely peptide-based and rely solely on supramolecular mechanisms for assembly.


Assuntos
Hidrogéis , Nanofibras , Hidrogéis/química , Nanofibras/química , Porosidade , Impressão Tridimensional , Peptídeos/química , Engenharia Tecidual/métodos
11.
Bioconjug Chem ; 34(1): 193-203, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36580277

RESUMO

Recently, there has been increased interest in using mannan as an immunomodulatory bioconjugate. Despite notable immunological and functional differences between the reduced (R-Man) and oxidized (O-Man) forms of mannan, little is known about the impact of mannan oxidation state on its in vivo persistence or its potential controlled release from biomaterials that may improve immunotherapeutic or prophylactic efficacy. Here, we investigate the impact of oxidation state on the in vitro and in vivo release of mannan from a biocompatible and immunostimulatory multidomain peptide hydrogel, K2(SL)6K2 (abbreviated as K2), that has been previously used for the controlled release of protein and small molecule payloads. We observed that O-Man released more slowly from K2 hydrogels in vitro than R-Man. In vivo, the clearance of O-Man from K2 hydrogels was slower than O-Man alone. We attributed the slower release rate to the formation of dynamic imine bonds between reactive aldehyde groups on O-Man and the lysine residues on K2. This imine interaction was also observed to improve K2 + O-Man hydrogel strength and shear recovery without significantly influencing secondary structure or peptide nanofiber formation. There were no observed differences in the in vivo release rates of O-Man loaded in K2, R-Man loaded in K2, and R-Man alone. These data suggest that, after subcutaneous injection, R-Man naturally persists longer in vivo than O-Man and minimally interacts with the peptide hydrogel. These results highlight a potentially critical, but previously unreported, difference in the in vivo behavior of O-Man and R-Man and demonstrate that K2 can be used to normalize the release of O-Man to that of R-Man. Further, since K2 itself is an adjuvant, a combination of O-Man and K2 could be used to enhance the immunostimulatory effects of O-Man for applications such as infectious disease vaccines and cancer immunotherapy.


Assuntos
Nanofibras , Humanos , Nanofibras/química , Mananas , Preparações de Ação Retardada , Hidrogéis/química , Peptídeos/química
12.
J Biomed Mater Res A ; 111(1): 15-34, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053984

RESUMO

Thermogelling hydrogels based on poly(N-isopropyl acrylamide) (p[NiPAAm]) and crosslinked with a peptide-bearing macromer poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) were fabricated to assess the role of hydrogel charge and lower critical solution temperature (LCST) over time in influencing cellular infiltration and tissue integration in an ex vivo cartilage explant model over 21 days. The p(NiPAAm)-based thermogelling polymer was synthesized to possess 0, 5, and 10 mol% dimethyl-γ-butyrolactone acrylate (DBA) to raise the LCST over time as the lactone rings hydrolyzed. Further, three peptides were designed to impart charge into the hydrogels via conjugation to the PdBT crosslinker. The positively, neutrally, and negatively charged peptides K4 (+), zwitterionic K2E2 (0), and E4 (-), respectively, were conjugated to the modular PdBT crosslinker and the hydrogels were evaluated for their thermogelation behavior in vitro before injection into the cartilage explant models. Samples were collected at days 0 and 21, and tissue integration and cellular infiltration were assessed via mechanical pushout testing and histology. Negatively charged hydrogels whose LCST changed over time (10 mol% DBA) were demonstrated to promote the greatest tissue integration when compared to the positive and neutral gels of the same thermogelling polymer formulation due to increased transport and diffusion across the hydrogel-tissue interface. Indeed, the negatively charged thermogelling polymer groups containing 5 and 10 mol% DBA demonstrated cellular infiltration and cartilage-like matrix deposition via histology. This study demonstrates the important role that material physicochemical properties play in dictating cell and tissue behavior and can inform future cartilage tissue engineering strategies.


Assuntos
Cartilagem , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Temperatura , Engenharia Tecidual , Polietilenoglicóis/química , Polímeros/química , Peptídeos/química
13.
Biomacromolecules ; 23(11): 4645-4654, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239387

RESUMO

Cation-π interactions play a significant role in the stabilization of globular proteins. However, their role in collagen triple helices is less well understood and they have rarely been used in de novo designed collagen mimetic systems. In this study, we analyze the stabilizing and destabilizing effects in pairwise amino acid interactions between cationic and aromatic residues in both axial and lateral sequential relationships. Thermal unfolding experiments demonstrated that only axial pairs are stabilizing, while the lateral pairs are uniformly destabilizing. Molecular dynamics simulations show that pairs with an axial relationship can achieve a near-ideal interaction distance, but pairs in a lateral relationship do not. Arginine-π systems were found to be more stabilizing than lysine-π and histidine-π. Arginine-π interactions were then studied in more chemically diverse ABC-type heterotrimeric helices, where arginine-tyrosine pairs were found to form the best helix. This work helps elucidate the role of cation-π interactions in triple helices and illustrates their utility in designing collagen mimetic peptides.


Assuntos
Arginina , Colágeno , Estrutura Secundária de Proteína , Modelos Moleculares , Cátions/química , Colágeno/química
14.
Biomater Sci ; 10(21): 6217-6229, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36102692

RESUMO

Adjuvants play a critical role in enhancing vaccine efficacy; however, there is a need to develop new immunomodulatory compounds to address emerging pathogens and to expand the use of immunotherapies. Multidomain peptides (MDPs) are materials composed of canonical amino acids that form injectable supramolecular hydrogels under physiological salt and pH conditions. MDP hydrogels are rapidly infiltrated by immune cells in vivo and have previously been shown to influence cytokine production. Therefore, we hypothesized that these immunostimulatory characteristics would allow MDPs to function as vaccine adjuvants. Herein, we demonstrate that loading antigen into MDP hydrogels does not interfere with their rheological properties and that positively charged MDPs can act as antigen depots, as demonstrated by their ability to release ovalbumin (OVA) over a period of 7-9 days in vivo. Mice vaccinated with MDP-adjuvanted antigen generated significantly higher IgG titers than mice treated with the unadjuvanted control, suggesting that these hydrogels potentiate humoral immunity. Interestingly, MDP hydrogels did not elicit a robust cellular immune response, as indicated by the lower production of IgG2c and smaller populations of tetramer-positive CD8+ T splenocytes compared to mice vaccinated alum-adjuvanted OVA. Together, the data suggest that MDP hydrogel adjuvants strongly bias the immune response towards humoral immunity while evoking a very limited cellular immune response. As a result, MDPs may have the potential to serve as adjuvants for applications that benefit exclusively from humoral immunity.


Assuntos
Hidrogéis , Imunidade Humoral , Camundongos , Animais , Ovalbumina , Adjuvantes Imunológicos/química , Antígenos , Peptídeos , Adjuvantes Farmacêuticos , Imunoglobulina G , Aminoácidos , Citocinas
15.
Nat Biomed Eng ; 6(6): 706-716, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35361934

RESUMO

Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm × 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals' sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Animais , Fontes de Energia Elétrica , Estudo de Prova de Conceito , Ratos , Nervo Isquiático , Suínos
16.
ACS Appl Bio Mater ; 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35446025

RESUMO

Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.

17.
Biomacromolecules ; 23(6): 2396-2403, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35446536

RESUMO

Collagen mimetic peptides (CMPs) are an excellent model to study the structural and biological properties of the extracellular matrix (ECM) due to ease of synthesis and variability in sequence. To ensure that synthetic materials accurately mimic the structure and function of natural collagen in the ECM, it is necessary to conserve the triple helix. However, CMP folding is subject to equilibrium, and frequently peptides exist in solution as both monomer and triple helix. Additionally, the stability of CMPs is highly dependent on peptide length and amino acid composition, leading to suboptimal performance. Here, we report the utility of covalent capture, a method to (a) direct the folding of a supramolecular triple helix and (b) form isopeptide bonds between the helix strands, in the design of an integrin-binding peptide with a GFOGER motif. Covalent capture effectively locked the triple helix and yielded a peptide with high thermal stability and a rapid folding rate. Compared to supramolecular triple helices bearing the same GFOGER-binding site, cell adhesion was substantially increased. In vitro assays using EDTA/Mg2+ and an anti-α2ß1 antibody demonstrated the preservation of the high specificity of the binding event. This covalently captured integrin-binding peptide provides a template for the future design of bioactive ECM mimics, which can overcome limitations of supramolecular approaches for potential drug and biomaterial designs.


Assuntos
Colágeno , Peptídeos , Materiais Biomiméticos , Adesão Celular , Colágeno/química , Integrinas/metabolismo , Peptídeos/química , Ligação Proteica
18.
Biomacromolecules ; 23(4): 1475-1489, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35258280

RESUMO

Collagen mimetic peptides (CMPs) fold into a polyproline type II triple helix, allowing the study of the structure and function (or misfunction) of the collagen family of proteins. This Perspective will focus on recent developments in the use of CMPs toward understanding the structure and controlling the stability of the triple helix. Triple helix assembly is influenced by various factors, including the single amino acid propensity for the triple helix fold, pairwise interactions between these amino acids, and long-range effects observed across the helix, such as bend, twist, and fraying. Important progress in creating a comprehensive and predictive understanding of these factors for peptides with exclusively natural amino acids has been made. In contrast, several groups have successfully developed unnatural amino acids that are engineered to stabilize the triple helical structure. A third approach to controlling the triple helical structure includes covalent cross-linking of the triple helix to stabilize the assembly, which eliminates the problematic equilibrium of unfolding into monomers and enforces compositional control. Advances in all these areas have resulted in significant improvements to our understanding and control of this important class of protein, allowing for the design and application of more chemically complex and well-controlled collagen mimetic biomaterials.


Assuntos
Colágeno , Peptídeos , Aminoácidos , Materiais Biocompatíveis , Biomimética , Colágeno/química , Peptídeos/química
19.
Chem Sci ; 13(9): 2789-2796, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35356674

RESUMO

Collagens and their most characteristic structural unit, the triple helix, play many critical roles in living systems which drive interest in preparing mimics of them. However, application of collagen mimetic helices is limited by poor thermal stability, slow rates of folding and poor equilibrium between monomer and trimer. Covalent capture of the self-assembled triple helix can solve these problems while preserving the native three-dimensional structure critical for biological function. Covalent capture takes advantage of strategically placed lysine and glutamate (or aspartate) residues which form stabilizing charge-pair interactions in the supramolecular helix and can subsequently be converted to isopeptide amide bonds under folded, aqueous conditions. While covalent capture is powerful, charge paired residues are frequently found in natural sequences which must be preserved to maintain biological function. Here we describe a minimal protecting group strategy to allow selective covalent capture of specific charge paired residues which leaves other charged residues unaltered. We investigate a series of side chain protecting groups for lysine and glutamate in model peptides for their ability to be deprotected easily and in high yield while maintaining (1) the solubility of the peptides in water, (2) the self-assembly and stability of the triple helix, and (3) the ability to covalently capture unprotected charge pairs. Optimized conditions are then illustrated in peptides derived from Pulmonary Surfactant protein A (SP-A). These covalently captured SP-A triple helices are found to have dramatically improved rates of folding and thermal stability while maintaining unmodified lysine-glutamate pairs in addition to other unmodified chemical functionality. The approach we illustrate allows for the covalent capture of collagen-like triple helices with virtually any sequence, composition or register. This dramatically broadens the utility of the covalent capture approach to the stabilization of biomimetic triple helices and thus also improves the utility of biomimetic collagens generally.

20.
Regen Biomater ; 8(6): rbab073, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934509

RESUMO

Thermogelling hydrogels, such as poly(N-isopropylacrylamide) [P(NiPAAm)], provide tunable constructs leveraged in many regenerative biomaterial applications. Recently, our lab developed the crosslinker poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol), which crosslinks P(NiPAAm-co-glycidyl methacrylate) via thiol-epoxy reaction and can be functionalized with azide-terminated peptides via alkyne-azide click chemistry. This study's aim was to evaluate the impact of peptides on the physicochemical properties of the hydrogels. The physicochemical properties of the hydrogels including the lower critical solution temperature, crosslinking times, swelling, degradation, peptide release and cytocompatibility were evaluated. The gels bearing peptides increased equilibrium swelling indicating hydrophilicity of the hydrogel components. Comparable sol fractions were found for all groups, indicating that inclusion of peptides does not impact crosslinking. Moreover, the inclusion of a matrix metalloproteinase-sensitive peptide allowed elucidation of whether release of peptides from the network was driven by hydrolysis or enzymatic cleavage. The hydrophilicity of the network determined by the swelling behavior was demonstrated to be the most important factor in dictating hydrogel behavior over time. This study demonstrates the importance of characterizing the impact of additives on the physicochemical properties of hydrogels. These characteristics are key in determining design considerations for future in vitro and in vivo studies for tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA