RESUMO
INTRODUCTION: EGFR tyrosine kinase inhibitor (EGFR-TKI)-sensitizing and -resistance mutations may be detected in plasma through circulating tumor DNA (ctDNA). Circulating tumor DNA level changes reflect alterations in tumor burden and could be a dynamic indicator of treatment effect. This analysis aimed to determine whether longitudinal EGFR-mutation ctDNA testing could detect progressive disease (PD) before radiologic detection. METHODS: This was a retrospective, exploratory ctDNA analysis in two phase 3 trials (FLAURA, NCT02296125; AURA3, NCT02151981). Patients had treatment-naïve (FLAURA) or EGFR-TKI pre-treated (AURA3) advanced NSCLC with EGFR mutations and on-study PD (RECIST [Response Evaluation Criteria in Solid Tumors]), with a baseline ctDNA result and EGFR-mutation ctDNA monitoring beyond Cycle 3 Day 1. Patients received osimertinib versus comparator EGFR-TKIs (FLAURA) or chemotherapy (AURA3). Outcomes included time from ctDNA PD to RECIST PD and the first subsequent treatment (FLAURA only). RESULTS: Circulating tumor DNA PD preceded or co-occurred with RECIST-defined PD in 93 out of 146 patients (64%) in FLAURA and 82 out of 146 patients (56%) in AURA3. Median time from ctDNA PD to RECIST-defined PD (mo) was 3.4 and 2.6 in the osimertinib and comparator EGFR-TKI arms (FLAURA) and 2.8 and 1.5 in the osimertinib and chemotherapy arms (AURA3). In FLAURA, the median time from ctDNA PD to the first subsequent treatment (mo) was 6.0 and 4.7 in the osimertinib (n = 51) and comparator EGFR-TKI arms (n = 70). CONCLUSIONS: Among patients with EGFR mutation-positive advanced NSCLC receiving EGFR-TKI or chemotherapy with ctDNA data and RECIST-defined PD, ctDNA PD preceded/co-occurred with RECIST-defined PD in approximately 60% of cases. Longitudinal ctDNA monitoring may detect PD before radiologic PD.
RESUMO
PURPOSE: Osimertinib is an EGFR tyrosine kinase inhibitor indicated for the treatment of EGFR-mutated (EGFRm)-driven lung adenocarcinomas. Osimertinib significantly improves progression-free survival in first-line-treated patients with EGFRm advanced non-small cell lung cancer (NSCLC). Despite the durable disease control, the majority of patients receiving osimertinib eventually develop disease progression. EXPERIMENTAL DESIGN: ctDNA profiling analysis of on-progression plasma samples from patients treated with osimertinib in both first- (phase III, FLAURA trial) and second-line trials (phase III, AURA3 trial) revealed a high prevalence of PIK3CA/AKT/PTEN alterations. In vitro and in vivo evidence using CRISPR-engineered NSCLC cell lines and patient-derived xenograft (PDX) models supports a functional role for PIK3CA and PTEN mutations in the development of osimertinib resistance. RESULTS: These alterations are functionally relevant as EGFRm NSCLC cells with engineered PIK3CA/AKT/PTEN alterations develop resistance to osimertinib and can be resensitized by treatment with the combination of osimertinib and the AKT inhibitor capivasertib. Moreover, xenograft and PDX in vivo models with PIK3CA/AKT/PTEN alterations display limited sensitivity to osimertinib relative to models without alterations, and in these double-mutant models, capivasertib and osimertinib combination elicits an improved antitumor effect versus osimertinib alone. CONCLUSIONS: Together, this approach offers a potential treatment strategy for patients with EGFRm-driven NSCLC who have a suboptimal response or develop resistance to osimertinib through PIK3CA/AKT/PTEN alterations. See related commentary by Vokes et al., p. 3968.
Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Classe I de Fosfatidilinositol 3-Quinases , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Mutação , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , PTEN Fosfo-Hidrolase/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Compostos de Anilina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/administração & dosagem , Indóis , PirróisRESUMO
This exploratory, post hoc analysis aimed to model circulating tumor DNA (ctDNA) dynamics and predict disease progression in patients with treatment-naïve locally advanced/metastatic epidermal growth factor receptor mutation (EGFRm)-positive non-small cell lung cancer, from the FLAURA trial (NCT02296125). Patients were randomized 1:1 and received osimertinib 80 mg once daily (q.d.) or comparator EGFR-TKIs (gefitinib 250 mg q.d. or erlotinib 150 mg q.d.). Plasma was collected at baseline and multiple timepoints until treatment discontinuation. Patients with Response Evaluation Criteria in Solid Tumors (RECIST) imaging data and detectable EGFR mutations (Ex19del/L858R) at baseline and ≥ 3 additional timepoints were evaluable. Joint modeling was conducted to characterize the relationship between longitudinal changes in ctDNA and probability of progression-free survival (PFS). A Bayesian joint model of ctDNA and PFS was developed solving differential equations with the ctDNA dynamics and the PFS time-to-event probability. Of 556 patients, 353 had detectable ctDNA at baseline. Evaluable patients (with available imaging and ≥ 3 additional timepoints, n = 320; ctDNA set) were divided into training (n = 259) and validation (n = 61) sets. In the validation set, the model predicted a median PFS of 17.7 months (95% confidence interval (CI): 11.9-28.3) for osimertinib (n = 23) and 9.1 months (95% CI: 6.3-14.8) for comparator (n = 38), consistent with observed RECIST PFS (16.4 months and 9.7, respectively). The model demonstrates that EGFRm ctDNA dynamics can predict the risk of disease progression in this patient population and could be used to predict RECIST-defined disease progression.
Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Antineoplásicos/uso terapêutico , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/uso terapêutico , Progressão da Doença , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas QuinasesRESUMO
PURPOSE: Plasma circulating tumor DNA (ctDNA) analysis is used for genotyping advanced non-small cell lung cancer (NSCLC); monitoring dynamic ctDNA changes may be used to predict outcomes. PATIENTS AND METHODS: This was a retrospective, exploratory analysis of two phase III trials [AURA3 (NCT02151981), FLAURA (NCT02296125)]. All patients had EGFR mutation-positive (EGFRm; ex19del or L858R) advanced NSCLC; AURA3 also included T790M-positive NSCLC. Osimertinib (FLAURA, AURA3), or comparator EGFR-tyrosine kinase inhibitor (EGFR-TKI; gefitinib/erlotinib; FLAURA), or platinum-based doublet chemotherapy (AURA3) was given. Plasma EGFRm was analyzed at baseline and Weeks 3/6 by droplet digital PCR. Outcomes were assessed by detectable/non-detectable baseline plasma EGFRm and plasma EGFRm clearance (non-detection) at Weeks 3/6. RESULTS: In AURA3 (n = 291), non-detectable versus detectable baseline plasma EGFRm had longer median progression-free survival [mPFS; HR, 0.48; 95% confidence interval (CI), 0.33-0.68; P < 0.0001]. In patients with Week 3 clearance versus non-clearance (n = 184), respectively, mPFS (months; 95% CI) was 10.9 (8.3-12.6) versus 5.7 (4.1-9.7) with osimertinib and 6.2 (4.0-9.7) versus 4.2 (4.0-5.1) with platinum-pemetrexed. In FLAURA (n = 499), mPFS was longer with non-detectable versus detectable baseline plasma EGFRm (HR, 0.54; 95% CI, 0.41-0.70; P < 0.0001). For Week 3 clearance versus non-clearance (n = 334), respectively, mPFS was 19.8 (15.1 to not calculable) versus 11.3 (9.5-16.5) with osimertinib and 10.8 (9.7-11.1) versus 7.0 (5.6-8.3) with comparator EGFR-TKI. Similar outcomes were observed by Week 6 clearance/non-clearance. CONCLUSIONS: Plasma EGFRm analysis as early as 3 weeks on-treatment has the potential to predict outcomes in EGFRm advanced NSCLC.
RESUMO
Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), potently and selectively inhibits EGFR-TKI-sensitizing and EGFR T790M resistance mutations. In the Phase III FLAURA study (NCT02296125), first-line osimertinib improved outcomes vs comparator EGFR-TKIs in EGFRm advanced non-small cell lung cancer. This analysis identifies acquired resistance mechanisms to first-line osimertinib. Next-generation sequencing assesses circulating-tumor DNA from paired plasma samples (baseline and disease progression/treatment discontinuation) in patients with baseline EGFRm. No EGFR T790M-mediated acquired resistance are observed; most frequent resistance mechanisms are MET amplification (n = 17; 16%) and EGFR C797S mutations (n = 7; 6%). Future research investigating non-genetic acquired resistance mechanisms is warranted.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), potently and selectively inhibits EGFR-TKI-sensitizing and EGFR T790M resistance mutations. This analysis evaluates acquired resistance mechanisms to second-line osimertinib (n = 78) in patients with EGFR T790M advanced non-small cell lung cancer (NSCLC) from AURA3 (NCT02151981), a randomized phase 3 study comparing osimertinib with chemotherapy. Plasma samples collected at baseline and disease progression/treatment discontinuation are analyzed using next-generation sequencing. Half (50%) of patients have undetectable plasma EGFR T790M at disease progression and/or treatment discontinuation. Fifteen patients (19%) have >1 resistance-related genomic alteration; MET amplification (14/78, 18%) and EGFR C797X mutation (14/78, 18%).
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Progressão da DoençaRESUMO
PURPOSE: Metastatic papillary renal cancer (PRC) has poor outcomes, and new treatments are required. There is a strong rationale for investigating mesenchymal epithelial transition receptor (MET) and programmed cell death ligand-1 (PD-L1) inhibition in this disease. In this study, the combination of savolitinib (MET inhibitor) and durvalumab (PD-L1 inhibitor) is investigated. METHODS: This single-arm phase II trial explored durvalumab (1,500 mg once every four weeks) and savolitinib (600 mg once daily; ClinicalTrials.gov identifier: NCT02819596). Treatment-naïve or previously treated patients with metastatic PRC were included. A confirmed response rate (cRR) of > 50% was the primary end point. Progression-free survival, tolerability, and overall survival were secondary end points. Biomarkers were explored from archived tissue (MET-driven status). RESULTS: Forty-one patients treated with advanced PRC were enrolled into this study and received at least one dose of study treatment. The majority of patients had Heng intermediate risk score (n = 26 [63%]). The cRR was 29% (n = 12; 95% CI, 16 to 46), and the trial therefore missed the primary end point. The cRR increased to 53% (95% CI, 28 to 77) in MET-driven patients (n/N = 9/27) and was 33% (95% CI, 17 to 54) in PD-L1-positive tumors (n/N = 9/27). The median progression-free survival was 4.9 months (95% CI, 2.5 to 10.0) in the treated population and 12.0 months (95% CI, 2.9 to 19.4) in MET-driven patients. The median overall survival was 14.1 months (95% CI, 7.3 to 30.7) in the treated population and 27.4 months (95% CI, 9.3 to not reached [NR]) in MET-driven patients. Grade 3 and above treatment related adverse events occurred in 17 (41%) patients. There was 1 grade 5 treatment-related adverse event (cerebral infarction). CONCLUSION: The combination of savolitinib and durvalumab was tolerable and associated with high cRRs in the exploratory MET-driven subset.
Assuntos
Antígeno B7-H1 , Neoplasias Renais , Humanos , Neoplasias Renais/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
MET-inhibitor and EGFR tyrosine kinase inhibitor (EGFR-TKI) combination therapy could overcome acquired MET-mediated osimertinib resistance. We present the final phase Ib TATTON (NCT02143466) analysis (Part B, n = 138/Part D, n = 42) assessing oral savolitinib 600 mg/300 mg once daily (q.d.) + osimertinib 80 mg q.d. in patients with MET-amplified, EGFR-mutated (EGFRm) advanced non-small cell lung cancer (NSCLC) and progression on prior EGFR-TKI. An acceptable safety profile was observed. In Parts B and D, respectively, objective response rates were 33% to 67% and 62%, and median progression-free survival (PFS) was 5.5 to 11.1 months and 9.0 months. Increased antitumor activity may occur with MET copy number ≥10. EGFRm circulating tumor DNA clearance on treatment predicted longer PFS in patients with detectable baseline ctDNA, while acquired resistance mechanisms to osimertinib + savolitinib were mediated by MET, EGFR, or KRAS alterations. SIGNIFICANCE: The savolitinib + osimertinib combination represents a promising therapy in patients with MET-amplified/overexpressed, EGFRm advanced NSCLC with disease progression on a prior EGFR-TKI. Acquired resistance mechanisms to this combination include those via MET, EGFR, and KRAS. On-treatment ctDNA dynamics can predict clinical outcomes and may provide an opportunity to inform earlier decision-making. This article is highlighted in the In This Issue feature, p. 1.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Compostos de Anilina/uso terapêutico , Receptores ErbBRESUMO
BACKGROUND: MEK/ERK inhibition can overcome acquired resistance to osimertinib in preclinical models. Osimertinib [EGFR-tyrosine kinase inhibitor (TKI)] plus selumetinib (MEK1/2 inhibitor) was assessed in the global TATTON study. METHODS: This multicenter, open-label, phase Ib study expansion cohort enrolled patients (aged ≥18 years) with MET-negative, EGFRm advanced NSCLC who had progressed on EGFR-TKIs. Patients were assigned to one of two cohorts by prior first- or second-generation or T790M-directed EGFR-TKI and received osimertinib 80 mg every day and intermittent selumetinib 75 mg twice a day orally. Safety and tolerability (primary objective) and antitumor activity determined by objective response rate (ORR), and progression-free survival (PFS) using RECIST v1.1 were assessed. Data cutoff: March 4, 2020. RESULTS: Forty-seven patients received treatment (prior first- or second-generation EGFR-TKI, n = 12; prior T790M-directed EGFR-TKI, n = 35). Forty-four (94%) patients were Asian; 30 (64%) had baseline exon 19 deletion. Most common AEs were diarrhea (89%), decreased appetite (40%), and stomatitis (32%); 11/47 patients (23%) had an AE Grade ≥3 possibly causally selumetinib-related. ORR was 66.7% [95% confidence interval (CI), 34.9-90.1] in the prior first- or second-generation EGFR-TKI group, 22.9% (95% CI, 10.4-40.1) in the prior T790M-directed EGFR-TKI group, and 34.0% (95% CI, 20.9-49.3) overall; median PFS was 15.0 (95% CI, 2.7-33.0), 2.8 (95% CI, 1.6-5.5), and 4.2 months (95% CI, 2.7-7.2), respectively. CONCLUSIONS: In this small study, AEs and tolerability of osimertinib plus selumetinib were as expected, on the basis of previous studies. The combination demonstrated antitumor activity supportive of further investigation in patients with MET-negative, EGFRm advanced NSCLC who had progressed on a previous EGFR-TKI.
RESUMO
Despite recent advances in elucidating molecular pathways underlying adrenocortical carcinoma (ACC), this orphan malignancy is associated with poor survival. Identification of targetable genomic alterations is critical to improve outcomes. The objective of this study was to characterize the genomic profile of a large cohort of patient ACC samples to identify actionable genomic alterations. Three hundred sixty-four individual patient ACC tumors were analyzed. The median age of the cohort was 52 years and 60.9% (n = 222) were female. ACC samples had common alterations in epigenetic pathways with 38% of tumors carrying alterations in genes involved in histone modification, 21% in telomere lengthening, and 21% in SWI/SNF complex. Tumor suppressor genes and WNT signaling pathway were each mutated in 51% of tumors. Fifty (13.7%) ACC tumors had a genomic alteration in genes involved in the DNA mismatch repair (MMR) pathway with many tumors also displaying an unusually high number of mutations and a corresponding MMR mutation signature. In addition, genomic alterations in several genes not previously associated with ACC were observed, including IL7R, LRP1B, FRS2 mutated in 6, 8 and 4% of tumors, respectively. In total, 58.5% of ACC (n = 213) had at least one potentially actionable genomic alteration in 46 different genes. As more than half of ACC have one or more potentially actionable genomic alterations, this highlights the value of targeted sequencing for this orphan cancer with a poor prognosis. In addition, significant incidence of MMR gene alterations suggests that immunotherapy is a promising therapeutic for a considerable subset of ACC patients.
Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/patologia , Feminino , Genômica , Humanos , Pessoa de Meia-Idade , MutaçãoRESUMO
Plasma cell-free DNA (cfDNA) sequencing is a compelling diagnostic tool in solid tumors and has been shown to have high positive predictive value. However, limited assay sensitivity means that negative plasma genotyping, or the absence of detection of mutation of interest, still requires reflex tumor biopsy. METHODS: We analyzed two independent cohorts of patients with advanced non-small-cell lung cancer (NSCLC) with known canonical driver and resistance mutations who underwent plasma cfDNA genotyping. We measured quantitative features, such as maximum allelic frequency (mAF), as clinically available measures of cfDNA tumor content, and studied their relationship with assay sensitivity. RESULTS: In patients with EGFR-mutant NSCLC harboring EGFR T790M, detection of driver mutation at > 1% AF conferred a sensitivity of 97% (368/380) for detection of T790M across three cfDNA genotyping platforms. Similarly, in a second cohort of patients with EGFR or KRAS driver mutations, when the mAF of nontarget mutations was > 1%, sensitivity for driver mutation detection was 100% (43/43). Combining the two NSCLC patient cohorts, the presence of nontarget mutations at mAF > 1% predicts for high sensitivity (> 95%) for identifying the presence of the known driver mutation, whereas mAF of ≤ 1% confers sensitivity of only 26%-54% across platforms. Focusing on 21 false-negative cases where the driver mutation was not detected on plasma next-generation sequencing, other mutations (presumably clonal hematopoiesis) were detected at ≤ 1% AF in 14 (67%). CONCLUSION: Plasma cfDNA genotyping is highly sensitive when adequate tumor DNA content is present. The likelihood of a false-negative cfDNA genotyping result is low in a sample with evidence of > 1% tumor content. Bioinformatic approaches are needed to further optimize the assessment of cfDNA tumor content in plasma genotyping assays.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Genótipo , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Humanos , Sensibilidade e EspecificidadeRESUMO
The steroid receptor coactivator-1 (SRC-1) is a nuclear receptor co-activator, known to play key roles in both estrogen response in bone and in breast cancer metastases. We previously demonstrated that the P1272S single nucleotide polymorphism (SNP; P1272S; rs1804645) in SRC-1 decreases the activity of estrogen receptor in the presence of selective estrogen receptor modulators (SERMs) and that it is associated with a decrease in bone mineral density (BMD) after tamoxifen therapy, suggesting it may disrupt the agonist action of tamoxifen. Given such dual roles of SRC-1 in the bone microenvironment and in tumor cell-intrinsic phenotypes, we hypothesized that SRC-1 and a naturally occurring genetic variant, P1272S, may promote breast cancer bone metastases. We developed a syngeneic, knock-in mouse model to study if the SRC-1 SNP is critical for normal bone homeostasis and bone metastasis. Our data surprisingly reveal that the homozygous SRC-1 SNP knock-in increases tamoxifen-induced bone protection after ovariectomy. The presence of the SRC-1 SNP in mammary glands resulted in decreased expression levels of SRC-1 and reduced tumor burden after orthotopic injection of breast cancer cells not bearing the SRC-1 SNP, but increased metastases to the lungs in our syngeneic mouse model. Interestingly, the P1272S SNP identified in a small, exploratory cohort of bone metastases from breast cancer patients was significantly associated with earlier development of bone metastasis. This study demonstrates the importance of the P1272S SNP in both the effect of SERMs on BMD and the development of tumor in the bone.
Assuntos
Adenocarcinoma/secundário , Densidade Óssea/genética , Neoplasias Ósseas/secundário , Neoplasias Mamárias Experimentais/patologia , Coativador 1 de Receptor Nuclear/fisiologia , Adenocarcinoma/genética , Animais , Neoplasias Ósseas/genética , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Introdução de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologiaRESUMO
Advanced non-small-cell lung cancer (NSCLC) patients with EGFR T790M-positive tumours benefit from osimertinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). Here we show that the size of the EGFR T790M-positive clone impacts response to osimertinib. T790M subclonality, as assessed by a retrospective NGS analysis of 289 baseline plasma ctDNA samples from T790M-positive advanced NSCLC patients from the AURA3 phase III trial, is associated with shorter progression-free survival (PFS), both in the osimertinib and the chemotherapy-treated patients. Both baseline and longitudinal ctDNA profiling indicate that the T790M subclonal tumours are enriched for PIK3CA alterations, which we demonstrate to confer resistance to osimertinib in vitro that can be partially reversed by PI3K pathway inhibitors. Overall, our results elucidate the impact of tumour heterogeneity on response to osimertinib in advanced stage NSCLC patients and could help define appropriate combination therapies in these patients.
Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação de Sentido Incorreto , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Receptores ErbB/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Estudos RetrospectivosRESUMO
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are recommended first-line treatments in EGFR-mutated (EGFRm) non-small-cell lung cancer (NSCLC). However, acquired resistance (e.g. MET amplification) is frequently observed. Savolitinib (volitinib, HMPL-504, AZD6094) is an oral, potent, and highly selective MET-TKI. In this phase Ib, open-label, multicenter study, we enrolled Chinese patients with EGFRm advanced NSCLC, whose disease progressed following prior EGFR-TKI treatment. In the safety run-in, patients received savolitinib 600 or 800 mg plus gefitinib 250 mg orally once daily, and dose-limiting toxicities were recorded. In the expansion phase, patients with MET amplification received savolitinib plus gefitinib. The primary endpoint was safety/tolerability. Secondary endpoints included antitumor activity. Thirteen patients were enrolled in the safety phase (median age 52 years, 46% female) and 51 enrolled in the expansion phase (median age 61 years, 67% female). No dose-limiting toxicities were reported in either dose group during the safety run-in. Adverse events of grade ≥ 3 in the safety run-in and expansion phases (n = 57) were reported in 21 (37%) patients. The most frequently reported adverse events (all grades) were: vomiting (n = 26, 46%), nausea (n = 23, 40%), increased aspartate aminotransferase (n = 22, 39%). Of four deaths, none were treatment-related. The objective response rates in EGFR T790M-negative, -positive, and -unknown patients were 52% (12/23), 9% (2/23), and 40% (2/5), respectively. Savolitinib 600 mg plus gefitinib 250 mg once daily had an acceptable safety profile and demonstrated promising antitumor activity in EGFRm, MET-amplified advanced NSCLC patients who had disease progression on EGFR-TKIs. NCT02374645, Date of registration: March 2nd 2015.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/uso terapêutico , Triazinas/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Relação Dose-Resposta a Droga , Receptores ErbB/genética , Feminino , Gefitinibe/administração & dosagem , Gefitinibe/efeitos adversos , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-met/biossíntese , Pirazinas/administração & dosagem , Pirazinas/efeitos adversos , Triazinas/administração & dosagem , Triazinas/efeitos adversosRESUMO
BACKGROUND: Metastatic breast cancer is the leading cause of cancer death in women, but the genomics of metastasis in breast cancer are poorly studied. METHODS: We explored a set of 11,616 breast tumors, including 5,034 metastases, which had undergone targeted sequencing during standard clinical care. RESULTS: Besides the known hotspot mutations in ESR1, we observed a metastatic enrichment of previously unreported, lower-prevalence mutations in the ligand-binding domain, implying that these mutations may also be functional. Furthermore, individual ESR1 hotspots are significantly enriched in specific metastatic tissues and histologies, suggesting functional differences between these mutations. Other alterations enriched across all metastases include loss of function of the CDK4 regulator CDKN1B, and mutations in the transcription factor CTCF. Mutations enriched at specific metastatic sites generally reflect biology of the target tissue and may be adaptations to growth in the local environment. These include PTEN and ASXL1 alterations in brain metastases and NOTCH1 alterations in skin. We observed an enrichment of KRAS, KEAP1, STK11 and EGFR mutations in lung metastases. However, the patterns of other mutations in these tumors indicate that these are misdiagnosed lung primaries rather than breast metastases. CONCLUSIONS: An order-of-magnitude increase in samples relative to previous studies allowed us to detect novel genomic characteristics of metastatic cancer and to expand and clarify previous findings.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adulto , Neoplasias da Mama/epidemiologia , Estudos de Casos e Controles , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Genes erbB-2 , Genômica , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , PrevalênciaRESUMO
Mutations in KEAP1 and NFE2L2 (encoding the protein Nrf2) are prevalent in both adeno and squamous subtypes of non-small cell lung cancer, as well as additional tumor indications. The consequence of these mutations is stabilized Nrf2 and chronic induction of a battery of Nrf2 target genes. We show that knockdown of Nrf2 caused modest growth inhibition of cells growing in two-dimension, which was more pronounced in cell lines expressing mutant KEAP1. In contrast, Nrf2 knockdown caused almost complete regression of established KEAP1-mutant tumors in mice, with little effect on wild-type (WT) KEAP1 tumors. The strong dependency on Nrf2 could be recapitulated in certain anchorage-independent growth environments and was not prevented by excess extracellular glutathione. A CRISPR screen was used to investigate the mechanism(s) underlying this dependence. We identified alternative pathways critical for Nrf2-dependent growth in KEAP1-mutant cell lines, including the redox proteins thioredoxin and peroxiredoxin, as well as the growth factor receptors IGF1R and ERBB3. IGF1R inhibition was effective in KEAP1-mutant cells compared with WT, especially under conditions of anchorage-independent growth. These results point to addiction of KEAP1-mutant tumor cells to Nrf2 and suggest that inhibition of Nrf2 or discrete druggable Nrf2 target genes such as IGF1R could be an effective therapeutic strategy for disabling these tumors. SIGNIFICANCE: This study identifies pathways activated by Nrf2 that are important for the proliferation and tumorigenicity of KEAP1-mutant non-small cell lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais/fisiologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Xenoenxertos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Camundongos , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1/metabolismoRESUMO
Microsatellite instability (MSI) is an important biomarker for predicting response to immune checkpoint inhibitor therapy, as emphasized by the recent checkpoint inhibitor approval for MSI-high (MSI-H) solid tumors. Herein, we describe and validate a novel method for determining MSI status from a next-generation sequencing comprehensive genomic profiling assay using formalin-fixed, paraffin-embedded samples. This method is 97% (65/67) concordant with current standards, PCR and immunohistochemistry. We further apply this method to >67,000 patient tumor samples to identify genes and pathways that are enriched in MSI-stable or MSI-H tumor groups. Data show that although rare in tumors other than colorectal and endometrial carcinomas, MSI-H samples are present in many tumor types. Furthermore, the large sample set revealed that MSI-H tumors selectively share alterations in genes across multiple common pathways, including WNT, phosphatidylinositol 3-kinase, and NOTCH. Last, MSI is sufficient, but not necessary, for a tumor to have elevated tumor mutation burden. Therefore, MSI can be determined from comprehensive genomic profiling with high accuracy, allowing for efficient MSI-H detection across all tumor types, especially those in which routine use of immunohistochemistry or PCR-based assays would be impractical because of a rare incidence of MSI. MSI-H tumors are enriched in alterations in specific signaling pathways, providing a rationale for investigating directed immune checkpoint inhibitor therapies in combination with pathway-targeted therapies.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Instabilidade de Microssatélites , Neoplasias/genética , Algoritmos , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Masculino , Mutação , Análise de Componente PrincipalRESUMO
Invasive lobular carcinoma (ILC) is an understudied subtype of breast cancer that requires novel therapies in the advanced setting. To study acquired resistance to endocrine therapy in ILC, we have recently performed RNA-Sequencing on long-term estrogen deprived cell lines and identified FGFR4 overexpression as a top druggable target. Here, we show that FGFR4 expression also increases dramatically in endocrine-treated distant metastases, with an average fold change of 4.8 relative to the paired primary breast tumor for ILC, and 2.4-fold for invasive ductal carcinoma (IDC). In addition, we now report that FGFR4 hotspot mutations are enriched in metastatic breast cancer, with an additional enrichment for ILC, suggesting a multimodal selection of FGFR4 activation. These data collectively support the notion that FGFR4 is an important mediator of endocrine resistance in ILC, warranting future mechanistic studies on downstream signaling of overexpressed wild-type and mutant FGFR4.
RESUMO
BACKGROUND: Breast cancer is the most common invasive cancer among women worldwide. Next-generation sequencing (NGS) has revolutionized the study of cancer across research labs around the globe; however, genomic testing in clinical settings remains limited. Advances in sequencing reliability, pipeline analysis, accumulation of relevant data, and the reduction of costs are rapidly increasing the feasibility of NGS-based clinical decision making. METHODS: We report the development of MammaSeq, a breast cancer-specific NGS panel, targeting 79 genes and 1369 mutations, optimized for use in primary and metastatic breast cancer. To validate the panel, 46 solid tumors and 14 plasma circulating tumor DNA (ctDNA) samples were sequenced to a mean depth of 2311× and 1820×, respectively. Variants were called using Ion Torrent Suite 4.0 and annotated with cravat CHASM. CNVKit was used to call copy number variants in the solid tumor cohort. The oncoKB Precision Oncology Database was used to identify clinically actionable variants. Droplet digital PCR was used to validate select ctDNA mutations. RESULTS: In cohorts of 46 solid tumors and 14 ctDNA samples from patients with advanced breast cancer, we identified 592 and 43 protein-coding mutations. Mutations per sample in the solid tumor cohort ranged from 1 to 128 (median 3), and the ctDNA cohort ranged from 0 to 26 (median 2.5). Copy number analysis in the solid tumor cohort identified 46 amplifications and 35 deletions. We identified 26 clinically actionable variants (levels 1-3) annotated by OncoKB, distributed across 20 out of 46 cases (40%), in the solid tumor cohort. Allele frequencies of ESR1 and FOXA1 mutations correlated with CA.27.29 levels in patient-matched blood draws. CONCLUSIONS: In solid tumor biopsies and ctDNA, MammaSeq detects clinically actionable mutations (OncoKB levels 1-3) in 22/46 (48%) solid tumors and in 4/14 (29%) of ctDNA samples. MammaSeq is a targeted panel suitable for clinically actionable mutation detection in breast cancer.