RESUMO
Background: Na+/H+ exchanger (NHE) maintains the alkaline pH of epithelial cells working at the cellular membrane and exchanging H+/Na+ ions. In renal tubular epithelial cells, the reabsorption of NaCl is implemented by NHE3 isoform, which is regulated by NHE regulatory factor-1 (NHERF1). Normally situated at the apical zones of proximal tubular cells, NHERF1 participates in cytoskeletal reorganization and signal transduction facilitating structural stability and ion exchange. Based on an extensive search in English literature, NHERF1/EBP50 immunoexpression has been studied in breast, colon, and other tumors with only one study on 21 cases of renal cell carcinomas (RCC). Methods: Using NHERF1/EBP50 immunohistochemistry (IHC) on 64 (82%) RCCs (34 clear cells, 21 papillary and 9 chromophobe types) and 14 (18%) oncocytomas, we evaluated and scored NHERF1/EBP50 immunoexpression depending on the World Health Organization (WHO)/International Society of Urological Pathology (ISUP) grading system followed by ultrastructural identification of microlumen-like structures (MLS) in clear cell renal cell carcinomas (ccRCC). Results: Staining patterns varied throughout the tumors and within individual tumors. Only ccRCC showed unique MLS within the cytoplasm of tumor cells. All neoplasia-transformed tubular cells, regardless of the tumor grade and stage, had altered immunoexpression of NHERF1/EBP50 ranging from complete absence to aberrant expression in the luminal cell membrane, nuclear or cytoplasmic localizations. Conclusions: Only ccRCC showed unique dot-like condensations of immunostaining/MLS at membranous, submembranous, and paranuclear localizations. The latter two localizations were mainly observed in the combined WHO/ISUP grade 1 and 2 group compared to the combined group of grade 3 and 4 tumor samples (P=0.0146 and P<0.0001, respectively). Ultrastructurally, the MLS were identified as thick microvilli trapped by a single-layer membrane, displaced into the cytoplasm and ranging from 400 nm to 3.5 µm. These significant ultrastructural reorganizations may contribute to tumor progression, metastasis, and drug resistance.
RESUMO
Sigma1 receptor protein (Sigmar1) is a small, multifunctional molecular chaperone protein ubiquitously expressed in almost all body tissues. This protein has previously shown its cardioprotective roles in rodent models of cardiac hypertrophy, heart failure, and ischemia-reperfusion injury. Extensive literature also suggested its protective functions in several central nervous system disorders. Sigmar1's molecular functions in the pulmonary system remained unknown. Therefore, we aimed to determine the expression of Sigmar1 in the lungs. We also examined whether Sigmar1 ablation results in histological, ultrastructural, and biochemical changes associated with lung pathology over aging in mice. In the current study, we first confirmed the presence of Sigmar1 protein in human and mouse lungs using immunohistochemistry and immunostaining. We used the Sigmar1 global knockout mouse (Sigmar1-/-) to determine the pathophysiological role of Sigmar1 in lungs over aging. The histological staining of lung sections showed altered alveolar structures, higher immune cells infiltration, and upregulation of inflammatory markers (such as pNFκB) in Sigmar1-/- mice compared to wildtype (Wt) littermate control mice (Wt). This indicates higher pulmonary inflammation resulting from Sigmar1 deficiency in mice, which was associated with increased pulmonary fibrosis. The protein levels of some fibrotic markers, fibronectin, and pSMAD2 Ser 245/250/255 and Ser 465/467, were also elevated in mice lungs in the absence of Sigmar1 compared to Wt. The ultrastructural analysis of lungs in Wt mice showed numerous multilamellar bodies of different sizes with densely packed lipid lamellae and mitochondria with a dark matrix and dense cristae. In contrast, the Sigmar1-/- mice lung tissues showed altered multilamellar body structures in alveolar epithelial type-II pneumocytes with partial loss of lipid lamellae structures in the lamellar bodies. This was further associated with higher protein levels of all four surfactant proteins, SFTP-A, SFTP-B, SFTP-C, and SFTP-D, in the Sigmar1-/- mice lungs. This is the first study showing Sigmar1's expression pattern in human and mouse lungs and its association with lung pathophysiology. Our findings suggest that Sigmar1 deficiency leads to increased pulmonary inflammation, higher pulmonary fibrosis, alterations of the multilamellar body stuructures, and elevated levels of lung surfactant proteins.
RESUMO
Amyotrophic lateral sclerosis (ALS) is a complex systemic disease that primarily involves motor neuron dysfunction and skeletal muscle atrophy. One commonly used mouse model to study ALS was generated by transgenic expression of a mutant form of human superoxide dismutase 1 (SOD1) gene harboring a single amino acid substitution of glycine to alanine at codon 93 (G93A*SOD1). Although mutant-SOD1 is ubiquitously expressed in G93A*SOD1 mice, a detailed analysis of the skeletal muscle expression pattern of the mutant protein and the resultant muscle pathology were never performed. Using different skeletal muscles isolated from G93A*SOD1 mice, we extensively characterized the pathological sequelae of histological, molecular, ultrastructural, and biochemical alterations. Muscle atrophy in G93A*SOD1 mice was associated with increased and differential expression of mutant-SOD1 across myofibers and increased MuRF1 protein level. In addition, high collagen deposition and myopathic changes sections accompanied the reduced muscle strength in the G93A*SOD1 mice. Furthermore, all the muscles in G93A*SOD1 mice showed altered protein levels associated with different signaling pathways, including inflammation, mitochondrial membrane transport, mitochondrial lipid uptake, and antioxidant enzymes. In addition, the mutant-SOD1 protein was found in the mitochondrial fraction in the muscles from G93A*SOD1 mice, which was accompanied by vacuolized and abnormal mitochondria, altered OXPHOS and PDH complex protein levels, and defects in mitochondrial respiration. Overall, we reported the pathological sequelae observed in the skeletal muscles of G93A*SOD1 mice resulting from the whole-body mutant-SOD1 protein expression.
RESUMO
The recent rise in illicit use of methamphetamine (METH), a highly addictive psychostimulant, is a huge health care burden due to its central and peripheral toxic effects. Mounting clinical studies have noted that METH use in humans is associated with the development of cardiomyopathy; however, preclinical studies and animal models to dissect detailed molecular mechanisms of METH-associated cardiomyopathy development are scarce. The present study utilized a unique very long-access binge and crash procedure of METH self-administration to characterize the sequelae of pathological alterations that occur with METH-associated cardiomyopathy. Rats were allowed to intravenously self-administer METH for 96 h continuous weekly sessions over 8 weeks. Cardiac function, histochemistry, ultrastructure, and biochemical experiments were performed 24 h after the cessation of drug administration. Voluntary METH self-administration induced pathological cardiac remodeling as indicated by cardiomyocyte hypertrophy, myocyte disarray, interstitial and perivascular fibrosis accompanied by compromised cardiac systolic function. Ultrastructural examination and native gel electrophoresis revealed altered mitochondrial morphology and reduced mitochondrial oxidative phosphorylation (OXPHOS) supercomplexes (SCs) stability and assembly in METH exposed hearts. Redox-sensitive assays revealed significantly attenuated mitochondrial respiratory complex activities with a compensatory increase in pyruvate dehydrogenase (PDH) activity reminiscent of metabolic remodeling. Increased autophagy flux and increased mitochondrial antioxidant protein level was observed in METH exposed heart. Treatment with mitoTEMPO reduced the autophagy level indicating the involvement of mitochondrial dysfunction in the adaptive activation of autophagy in METH exposed hearts. Altogether, we have reported a novel METH-associated cardiomyopathy model using voluntary drug seeking behavior. Our studies indicated that METH self-administration profoundly affects mitochondrial ultrastructure, OXPHOS SCs assembly and redox activity accompanied by increased PDH activity that may underlie observed cardiac dysfunction.
Assuntos
Cardiomiopatias , Estimulantes do Sistema Nervoso Central , Metanfetamina , Humanos , Ratos , Animais , Metanfetamina/toxicidade , Estimulantes do Sistema Nervoso Central/farmacologia , Autofagia , MitocôndriasRESUMO
The subcellular localization is critical to delineating proper function and determining the molecular mechanisms of a particular protein. Several qualitative and quantitative techniques are used to determine the subcellular localization of proteins. One of the emerging techniques in determining the subcellular localization of a protein is quantum dots (QD)-mediated immunolabeling of a protein followed by imaging them with transmission electron microscopy (TEM). QD is a semiconductor nanocrystal with a dual property of crystalline structure and high electron density, which makes them applicable to electron microscopy. This current method visualized the subcellular localization of Sigma 1 receptor (Sigmar1) protein using QD-TEM in the heart tissue at ultrastructural level. Small cubes of the heart tissue sections from a wild-type mouse were fixed in 3% glutaraldehyde, subsequently osmicated, stained with uranyl acetate, followed by sequential dehydration with ethanol and acetone. These dehydrated heart tissue sections were embedded in low-viscosity epoxy resins, cut into thin sections of 500 nm thickness, put on the grid, and subsequently subjected to antigen unmasking with 5% sodium metaperiodate, followed by quenching of the residual aldehydes with glycine. The tissues were blocked, followed by sequential incubation in primary antibody, biotinylated secondary antibody, and streptavidin-conjugated QD. These stained sections were blot dried and imaged at high magnification using TEM. The QD-TEM technique allowed the visualization of Sigmar1 protein's subcellular localization at the ultrastructural level in the heart. These techniques can be used to visualize the presence of any protein and subcellular localization in any organ system.
Assuntos
Pontos Quânticos , Acetona , Animais , Resinas Epóxi , Etanol , Glutaral , Glicina , Camundongos , Microscopia Eletrônica de Transmissão , EstreptavidinaRESUMO
Sigmar1 is a widely expressed molecular chaperone protein in mammalian cell systems. Accumulating research demonstrated the cardioprotective roles of pharmacologic Sigmar1 activation by ligands in preclinical rodent models of cardiac injury. Extensive biochemical and immuno-electron microscopic research demonstrated Sigmar1's sub-cellular localization largely depends on cell and organ types. Despite comprehensive studies, Sigmar1's direct molecular role in cardiomyocytes remains elusive. In the present study, we determined Sigmar1's subcellular localization, transmembrane topology, and function using complementary microscopy, biochemical, and functional assays in cardiomyocytes. Quantum dots in transmission electron microscopy showed Sigmar1 labeled quantum dots on the mitochondrial membranes, lysosomes, and sarcoplasmic reticulum-mitochondrial interface. Subcellular fractionation of heart cell lysates confirmed Sigmar1's localization in purified mitochondria fraction and lysosome fraction. Immunocytochemistry confirmed Sigmar1 colocalization with mitochondrial proteins in isolated adult mouse cardiomyocytes. Sigmar1's mitochondrial localization was further confirmed by Sigmar1 colocalization with Mito-Tracker in isolated mouse heart mitochondria. A series of biochemical experiments, including alkaline extraction and proteinase K treatment of purified heart mitochondria, demonstrated Sigmar1 as an integral mitochondrial membrane protein. Sigmar1's structural requirement for mitochondrial localization was determined by expressing FLAG-tagged Sigmar1 fragments in cells. Full-length Sigmar1 and Sigmar1's C terminal-deletion fragments were able to localize to the mitochondrial membrane, whereas N-terminal deletion fragment was unable to incorporate into the mitochondria. Finally, functional assays using extracellular flux analyzer and high-resolution respirometry showed Sigmar1 siRNA knockdown significantly altered mitochondrial respiration in cardiomyocytes. Overall, we found that Sigmar1 localizes to mitochondrial membranes and is indispensable for maintaining mitochondrial respiratory homeostasis in cardiomyocytes.
Assuntos
Mitocôndrias Cardíacas/fisiologia , Miócitos Cardíacos/metabolismo , Transporte Proteico/fisiologia , Receptores sigma/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , RNA Interferente Pequeno , Ratos , Receptores sigma/genética , Receptor Sigma-1RESUMO
Sigma 1 receptor (Sigmar1) is a widely expressed, multitasking molecular chaperone protein that plays functional roles in several cellular processes. Mutations in the Sigmar1 gene are associated with several distal neuropathies with strong manifestation in skeletal muscle dysfunction with phenotypes like muscle wasting and atrophy. However, the physiological function of Sigmar1 in skeletal muscle remains unknown. Herein, the physiological role of Sigmar1 in skeletal muscle structure and function in gastrocnemius, quadriceps, soleus, extensor digitorum longus, and tibialis anterior muscles was determined. Quantification of myofiber cross-sectional area showed altered myofiber size distribution and changes in myofiber type in the skeletal muscle of the Sigmar1-/- mice. Interestingly, ultrastructural analysis by transmission electron microscopy showed the presence of abnormal mitochondria, and immunostaining showed derangements in dystrophin localization in skeletal muscles from Sigmar1-/- mice. In addition, myopathy in Sigmar1-/- mice was associated with an increased number of central nuclei, increased collagen deposition, and fibrosis. Functional studies also showed reduced endurance and exercise capacity in the Sigmar1-/- mice without any changes in voluntary locomotion, markers for muscle denervation, and muscle atrophy. Overall, this study shows, for the first time, a potential physiological function of Sigmar1 in maintaining healthy skeletal muscle structure and function.
Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Receptores sigma/deficiência , Animais , Colágeno/metabolismo , Distrofina/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/ultraestrutura , Condicionamento Físico Animal , Transporte Proteico , Receptores sigma/metabolismo , Receptor Sigma-1RESUMO
Methamphetamine-associated cardiomyopathy is the leading cause of death linked with illicit drug use. Here we show that Sigmar1 is a therapeutic target for methamphetamine-associated cardiomyopathy and defined the molecular mechanisms using autopsy samples of human hearts, and a mouse model of "binge and crash" methamphetamine administration. Sigmar1 expression is significantly decreased in the hearts of human methamphetamine users and those of "binge and crash" methamphetamine-treated mice. The hearts of methamphetamine users also show signs of cardiomyopathy, including cellular injury, fibrosis, and enlargement of the heart. In addition, mice expose to "binge and crash" methamphetamine develop cardiac hypertrophy, fibrotic remodeling, and mitochondrial dysfunction leading to contractile dysfunction. Methamphetamine treatment inhibits Sigmar1, resulting in inactivation of the cAMP response element-binding protein (CREB), decreased expression of mitochondrial fission 1 protein (FIS1), and ultimately alteration of mitochondrial dynamics and function. Therefore, Sigmar1 is a viable therapeutic agent for protection against methamphetamine-associated cardiomyopathy.