Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(587)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790024

RESUMO

The functional state of T cells is a key determinant for effective antitumor immunity and immunotherapy. Cellular metabolism, including lipid metabolism, controls T cell differentiation, survival, and effector functions. Here, we report that development of T cell senescence driven by both malignant tumor cells and regulatory T cells is a general feature in cancers. Senescent T cells have active glucose metabolism but exhibit unbalanced lipid metabolism. This unbalanced lipid metabolism results in changes of expression of lipid metabolic enzymes, which, in turn, alters lipid species and accumulation of lipid droplets in T cells. Tumor cells and Treg cells drove elevated expression of group IVA phospholipase A2, which, in turn, was responsible for the altered lipid metabolism and senescence induction observed in T cells. Mitogen-activated protein kinase signaling and signal transducer and activator of transcription signaling coordinately control lipid metabolism and group IVA phospholipase A2 activity in responder T cells during T cell senescence. Inhibition of group IVA phospholipase A2 reprogrammed effector T cell lipid metabolism, prevented T cell senescence in vitro, and enhanced antitumor immunity and immunotherapy efficacy in mouse models of melanoma and breast cancer in vivo. Together, these findings identify mechanistic links between T cell senescence and regulation of lipid metabolism in the tumor microenvironment and provide a new target for tumor immunotherapy.


Assuntos
Imunoterapia , Metabolismo dos Lipídeos , Animais , Senescência Celular , Humanos , Camundongos , Linfócitos T Reguladores , Microambiente Tumoral
2.
Cell Rep ; 27(3): 940-954.e6, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30956133

RESUMO

Exomeres are a recently discovered type of extracellular nanoparticle with no known biological function. Herein, we describe a simple ultracentrifugation-based method for separation of exomeres from exosomes. Exomeres are enriched in Argonaute 1-3 and amyloid precursor protein. We identify distinct functions of exomeres mediated by two of their cargo, the ß-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) that α2,6- sialylates N-glycans, and the EGFR ligand, amphiregulin (AREG). Functional ST6Gal-I in exomeres can be transferred to cells, resulting in hypersialylation of recipient cell-surface proteins including ß1-integrin. AREG-containing exomeres elicit prolonged EGFR and downstream signaling in recipient cells, modulate EGFR trafficking in normal intestinal organoids, and dramatically enhance the growth of colonic tumor organoids. This study provides a simplified method of exomere isolation and demonstrates that exomeres contain and can transfer functional cargo. These findings underscore the heterogeneity of nanoparticles and should accelerate advances in determining the composition and biological functions of exomeres.


Assuntos
Exossomos/metabolismo , Nanopartículas/metabolismo , Anfirregulina/genética , Anfirregulina/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cães , Receptores ErbB/química , Receptores ErbB/metabolismo , Exossomos/química , Humanos , Lipídeos/análise , Lipídeos/química , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Nanopartículas/química , Ácidos Nucleicos/análise , Tamanho da Partícula , Análise de Componente Principal , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Sialiltransferases/análise , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
4.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220461

RESUMO

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Assuntos
HDL-Colesterol/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana/ultraestrutura , Células 3T3 , Animais , Transporte Biológico/fisiologia , Antígenos CD36/metabolismo , Células CHO , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Colesterol/metabolismo , Cricetulus , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo , Alinhamento de Sequência , Esteróis/metabolismo
5.
J Lipid Res ; 59(4): 696-705, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29444934

RESUMO

α-Chlorofatty aldehydes (α-ClFALDs) and α-bromofatty aldehydes (α-BrFALDs) are produced in activated neutrophils and eosinophils. This study investigated the ability of α-BrFALD and α-ClFALD to react with the thiols of GSH and protein cysteinyl residues. Initial studies showed that 2-bromohexadecanal (2-BrHDA) and 2-chlorohexadecanal (2-ClHDA) react with GSH producing the same fatty aldehyde-GSH adduct (FALD-GSH). In both synthetic and cellular reactions, FALD-GSH production was more robust with 2-BrHDA compared with 2-ClHDA as precursor. NaBr-supplemented phorbol myristate acetate (PMA)-activated neutrophils formed more α-BrFALD and FALD-GSH compared with non-NaBr-supplemented neutrophils. Primary human eosinophils, which preferentially produce hypobromous acid and α-BrFALD, accumulated FALD-GSH following PMA stimulation. Mice exposed to Br2 gas had increased levels of both α-BrFALD and FALD-GSH in the lungs, as well as elevated systemic plasma levels of FALD-GSH in comparison to mice exposed to air. Similar relative reactivity of α-ClFALD and α-BrFALD with protein thiols was shown using click analogs of these aldehydes. Collectively, these data demonstrate that GSH and protein adduct formation are much greater as a result of nucleophilic attack of cysteinyl residues on α-BrFALD compared with α-ClFALD, which was observed in both primary leukocytes and in mice exposed to bromine gas.


Assuntos
Aldeídos/sangue , Bromo/sangue , Peroxidase de Eosinófilo/sangue , Glutationa Transferase/sangue , Peroxidase/sangue , Animais , Bromo/administração & dosagem , Química Click , Peroxidase de Eosinófilo/metabolismo , Glutationa Transferase/metabolismo , Voluntários Saudáveis , Humanos , Camundongos , Peroxidase/metabolismo , Células RAW 264.7
6.
Arch Biochem Biophys ; 641: 31-38, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378164

RESUMO

Myeloperoxidase produces the two-electron oxidant HOCl, which targets plasmalogen phospholipids liberating 2-chlorofatty aldehyde. 2-Chlorofatty aldehyde has four known fates: 1) oxidation to 2-chlorofatty acid; 2) reduction to 2-chlorofatty alcohol; 3) Schiff base adduct formation with proteins and amines; and 4) reactivity with glutathione through nucleophilic attack of the α-chlorinated carbon. 2-Chlorofatty acid does not undergo conventional fatty acid ß-oxidation due to the presence of the α-chlorinated carbon; however, 2-chlorofatty acid does undergo sequential ω-oxidation and ß-oxidation from the ω-end, ultimately resulting in 2-chloroadipic acid urinary excretion. Recent studies have demonstrated that 2-chlorofatty acid clearance is increased by treatment with the PPAR-α agonist WY14643, which increases the enzymatic machinery responsible for hepatic ω-oxidation. Furthermore, 2-chlorofatty acid has been shown to be a PPAR-α agonist, and thus accelerates its own clearance. The roles of 2-chlorofatty aldehyde and 2-chlorofatty acid on leukocyte and endothelial function have been explored by several groups, suggesting that chlorinated lipids induce endothelial cell dysfunction, neutrophil chemotaxis, monocyte apoptosis, and alterations in vascular tone. Thus, the chlorinated lipidome, produced in response to leukocyte activation, is a potential biomarker and therapeutic target to modulate host response in inflammatory diseases.


Assuntos
Cloro/metabolismo , Ácido Hipocloroso/metabolismo , Metabolismo dos Lipídeos , Peroxidase/metabolismo , Plasmalogênios/metabolismo , Aldeídos/metabolismo , Animais , Biomarcadores/metabolismo , Doença , Esterificação , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/urina , Halogenação , Humanos , Neutrófilos/metabolismo , Oxirredução , PPAR alfa/metabolismo
7.
J Lipid Res ; 59(1): 113-122, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167411

RESUMO

Endothelial dysfunction is a hallmark of multiple inflammatory diseases. Leukocyte interactions with the endothelium have significant effects on vascular wall biology and pathophysiology. Myeloperoxidase (MPO)-derived oxidant products released from leukocytes are potential mediators of inflammation and endothelial dysfunction. 2-Chlorofatty acids (2-ClFAs) are produced as a result of MPO-derived HOCl targeting plasmalogen phospholipids. Chlorinated lipids have been shown to be associated with multiple inflammatory diseases, but their impact on surrounding endothelial cells has not been examined. This study tested the biological properties of the 2-ClFA molecular species 2-chlorohexadecanoic acid (2-ClHA) on endothelial cells. A synthetic alkyne analog of 2-ClHA, 2-chlorohexadec-15-ynoic acid (2-ClHyA), was used to examine the subcellular localization of 2-ClFA in human coronary artery endothelial cells. Click chemistry experiments revealed that 2-ClHyA localizes to Weibel-Palade bodies. 2-ClHA and 2-ClHyA promote the release of P-selectin, von Willebrand factor, and angiopoietin-2 from endothelial cells. Functionally, 2-ClHA and 2-ClHyA cause neutrophils to adhere to and platelets to aggregate on the endothelium, as well as increase permeability of the endothelial barrier which has been tied to the release of angiopoietin-2. These findings suggest that 2-ClFAs promote endothelial cell dysfunction, which may lead to broad implications in inflammation, thrombosis, and blood vessel stability.


Assuntos
Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Corpos de Weibel-Palade/efeitos dos fármacos , Células Cultivadas , Vasos Coronários/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Humanos , Relação Estrutura-Atividade , Corpos de Weibel-Palade/metabolismo
8.
JCI Insight ; 2(23)2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212955

RESUMO

Sepsis-associated acute respiratory distress syndrome (ARDS) is characterized by neutrophilic inflammation and poor survival. Since neutrophil myeloperoxidase (MPO) activity leads to increased plasma 2-chlorofatty acid (2-ClFA) levels, we hypothesized that plasma concentrations of 2-ClFAs would associate with ARDS and mortality in subjects with sepsis. In sequential consenting patients with sepsis, free 2-ClFA levels were significantly associated with ARDS, and with 30-day mortality, for each log increase in free 2-chlorostearic acid. Plasma MPO was not associated with either ARDS or 30-day mortality but was correlated with 2-ClFA levels. Addition of plasma 2-ClFA levels to the APACHE III score improved prediction for ARDS. Plasma 2-ClFA levels correlated with plasma levels of angiopoietin-2, E selectin, and soluble thrombomodulin. Endothelial cells treated with 2-ClFA responded with increased adhesion molecule surface expression, increased angiopoietin-2 release, and dose-dependent endothelial permeability. Our results suggest that 2-ClFAs derived from neutrophil MPO-catalyzed oxidation contribute to pulmonary endothelial injury and have prognostic utility in sepsis-associated ARDS.


Assuntos
Ácidos Graxos/sangue , Hidrocarbonetos Clorados/sangue , Peroxidase/sangue , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , APACHE , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade , Sepse/sangue , Sepse/mortalidade , Estados Unidos/epidemiologia
9.
Lipids ; 51(12): 1421-1425, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757707

RESUMO

Platelet-activating factor (PAF) is a potent biologically active phospholipid that mediates human physiological and pathophysiologic responses. PAF levels increase transiently and are typically assessed by techniques with limitations related to expense, sensitivity, pre-analysis derivatization and interference with isobaric molecules. This study elucidates a facile, accurate liquid chromatography-mass spectrometry analytical method for PAF. In negative ion mode using electrospray ionization, collisionally-activated dissociation analysis showed a unique product ion for acetate adducts of PAF molecular species representing the loss of methyl acetate from the polar head group and loss of a part of the acetate group from the sn-2 position. This product ion was exploited for selected reaction monitoring of PAF molecular species following separation by reversed-phase liquid chromatography. Standard calibration responses were determined, and this method was able to detect as low as 100 fmol of PAF. Finally, PAF molecular species were quantified in human neutrophils and monocytes.


Assuntos
Cromatografia de Fase Reversa/métodos , Monócitos/metabolismo , Neutrófilos/metabolismo , Fator de Ativação de Plaquetas/análise , Acetatos/química , Cromatografia Líquida de Alta Pressão , Humanos , Fator de Ativação de Plaquetas/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA